

Biomolecular Structure and Mechanics

14th of May 2025

Structural Biology
X-ray Crystallography

Dr. Maria Jose Marcaida Lopez

LBM

LAB AI 2351

Content of lectures

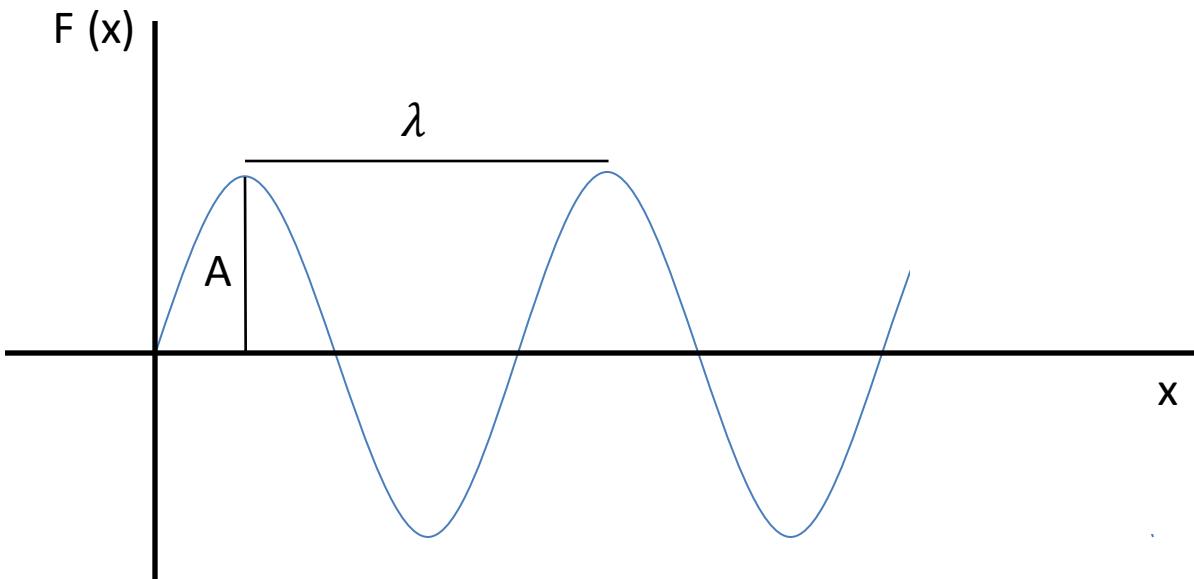
- **Why x-rays and why crystals?**
- **Macromolecular crystallization**
- **Crystal packing**
- **The diffraction experiment**
- The phase problem
- Molecular replacement
- Refinement and validation

Content of lectures

- **Why x-rays and why crystals?**
- **Macromolecular crystallization**
 - Need large amount of chemically and conformationally pure macromolecule
 - Test ∞ parameters to produce intermolecular interactions that lead to crystals using vapor diffusion method, for example.
 - Protect the crystals against ice formation using cryoprotectant and expose them to x-rays in the synchrotron.
- **Crystal packing**
 - Unit cell
 - Asymmetric unit (AU) and space group symmetry
 - Differentiate between biological oligomeric form and crystal contacts and AU content
- **The diffraction experiment**
 - Collect all possible scattered x-rays in all possible directions before the x-rays damage the crystal
 - Structure factor ($F(S)$) equation describes the diffracted x-ray, where the amplitude is dependent on the type of atom (# of electrons) doing the scattering and the phase depends on the direction of scattering.
 - Bragg's law determines the angle of diffraction of the x-rays diffracted from a crystal
- The phase problem
- Molecular replacement
- Refinement and validation

X-rays as Waves

$$F(x) = A \sin (2\pi\nu x + \alpha)$$



Where:

A: amplitude

$\nu = 1/\lambda$: frequency

λ = wavelength

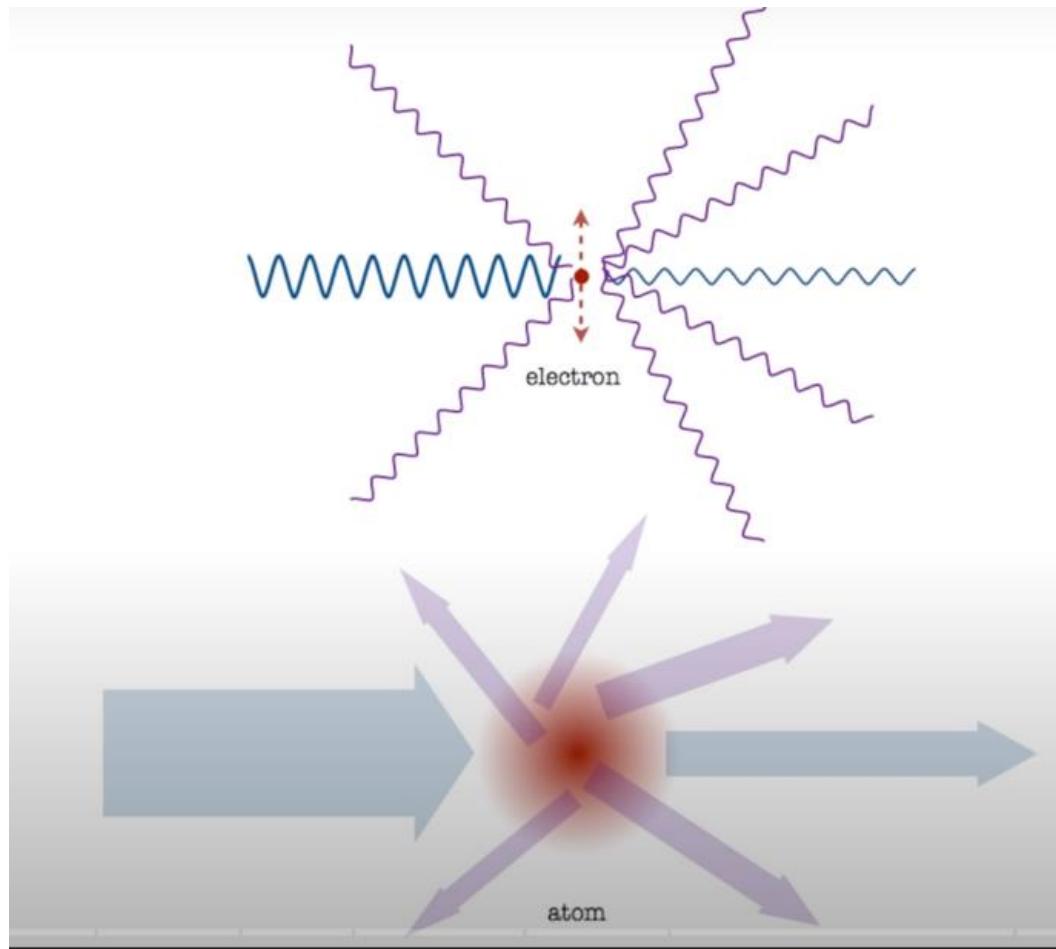
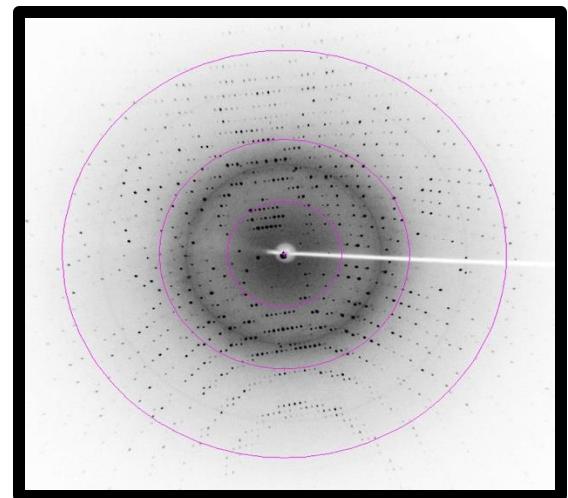
α = phase

The energy of the radiation is related to its λ like this:

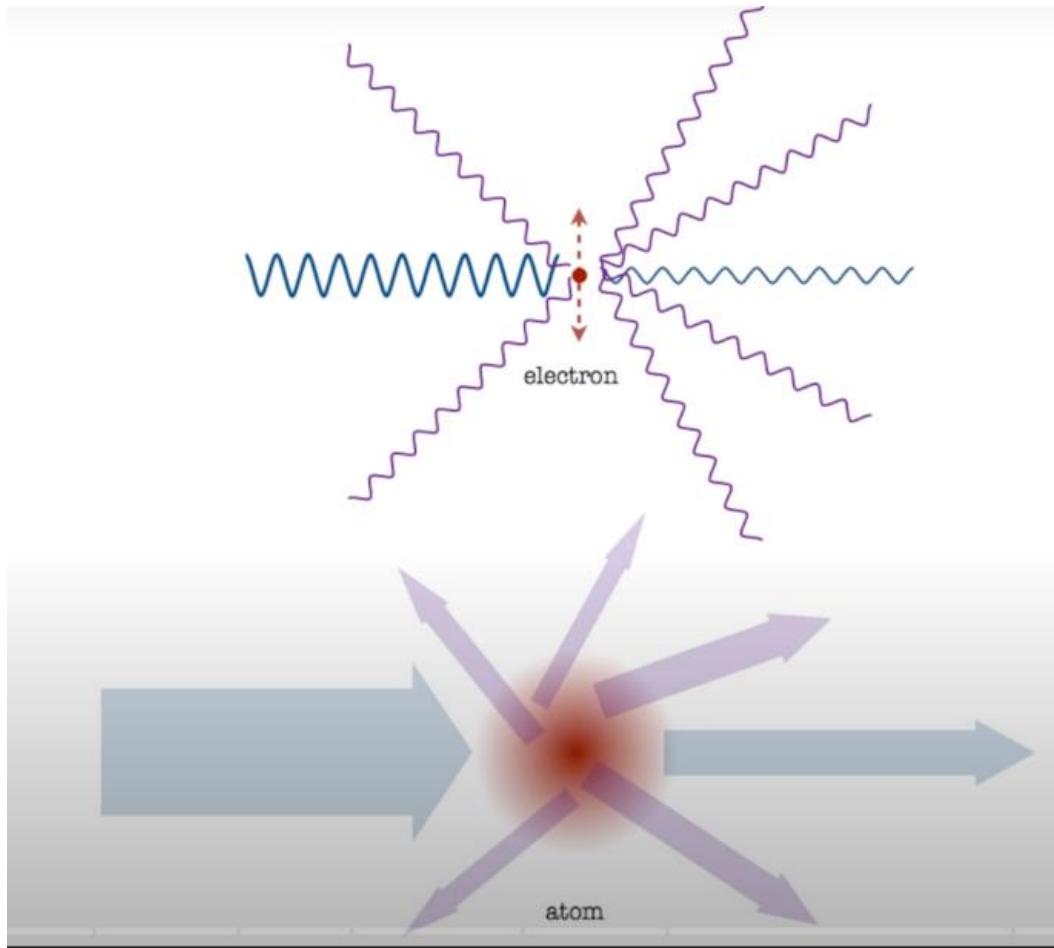
$$E = hc/\lambda$$

Where h is Plank's constant and c is the speed of light

X-ray scattering



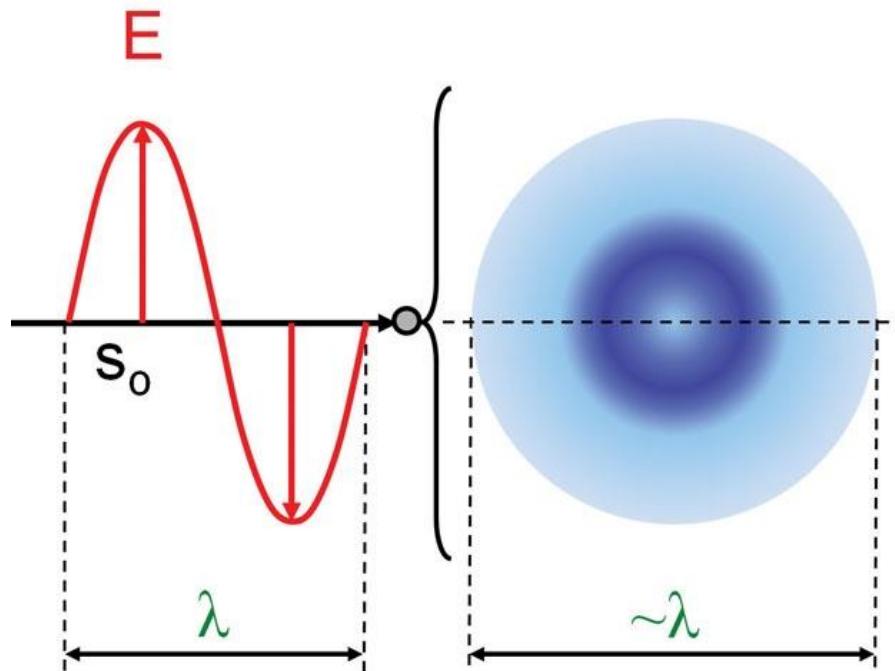
X-ray scattering



DIFFRACTION experiment

- What we measure is the intensity of the scattered X-rays
 $\lambda_{\text{out}} = \lambda_{\text{in}}$
- What we calculate is the electron position - electron density - of the object doing the scattering

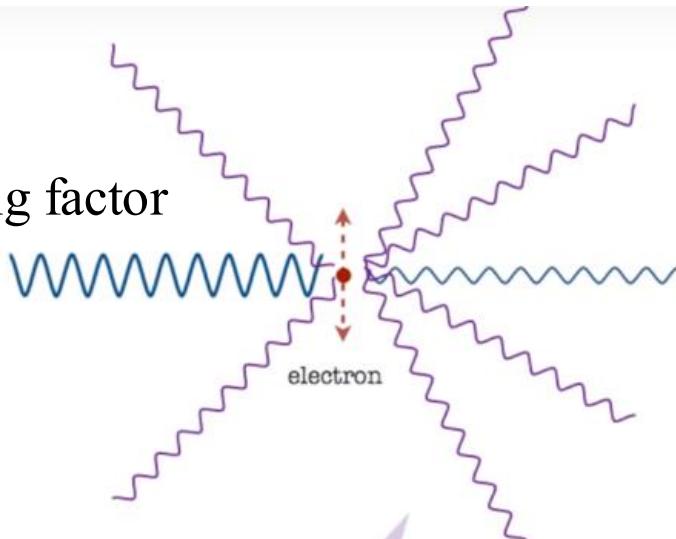
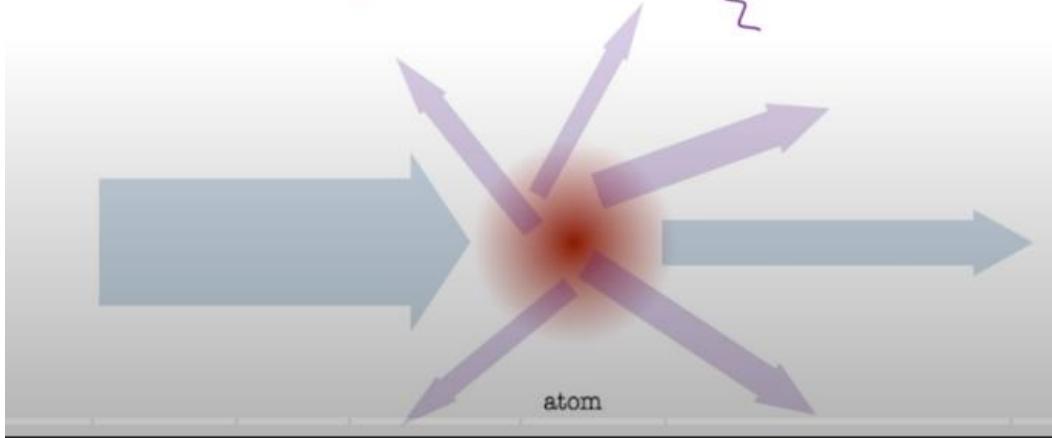
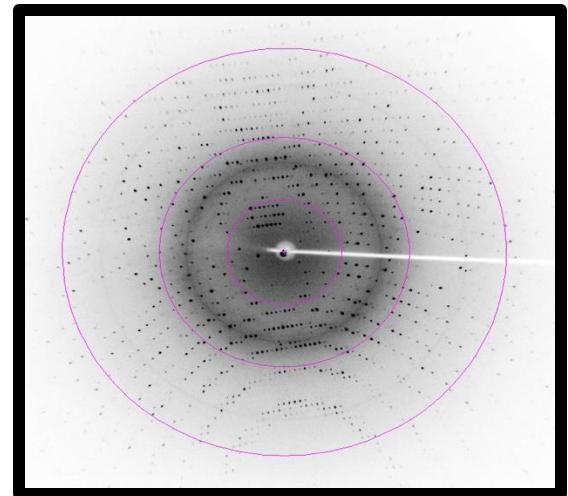
Why x-rays?



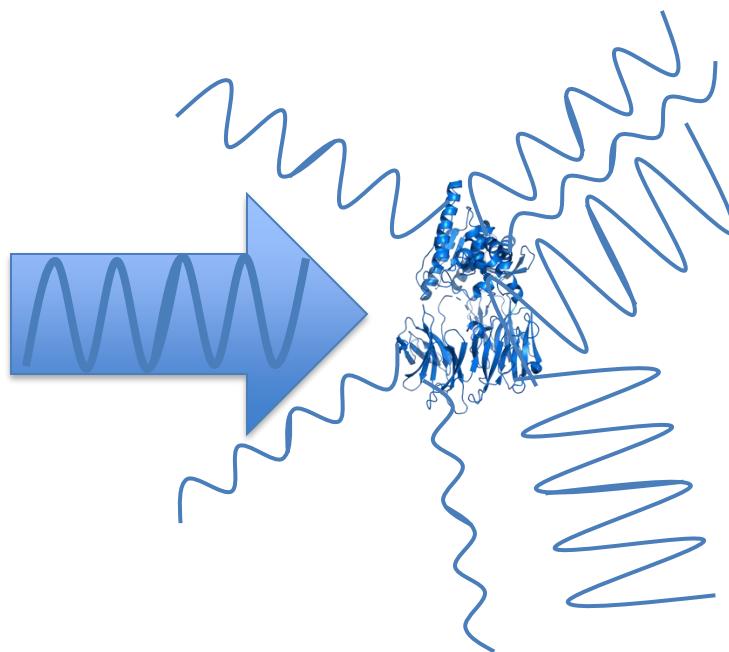
X-ray scattering intensity depends on the atom type

$$F_j(S) = f_j e^{2\pi i \alpha}$$

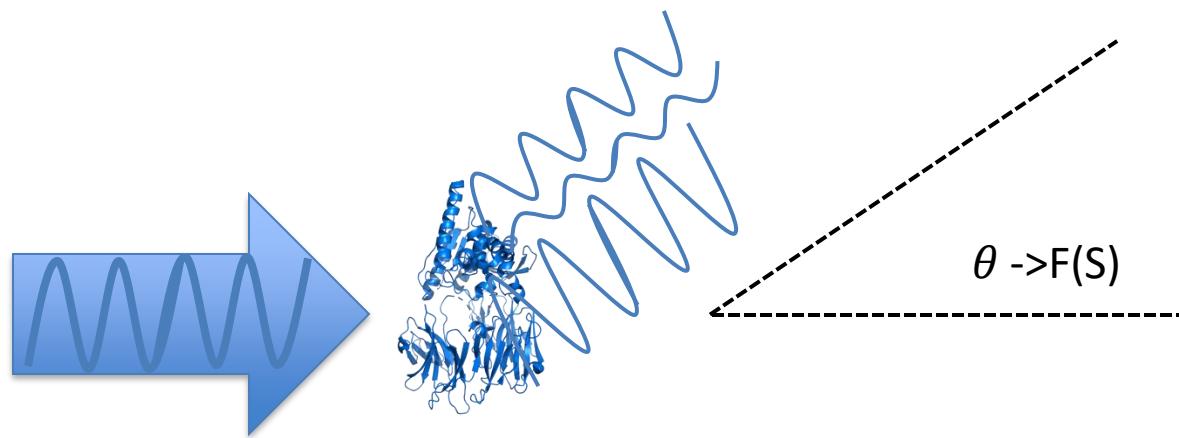
f_j is the scattering factor of atom j



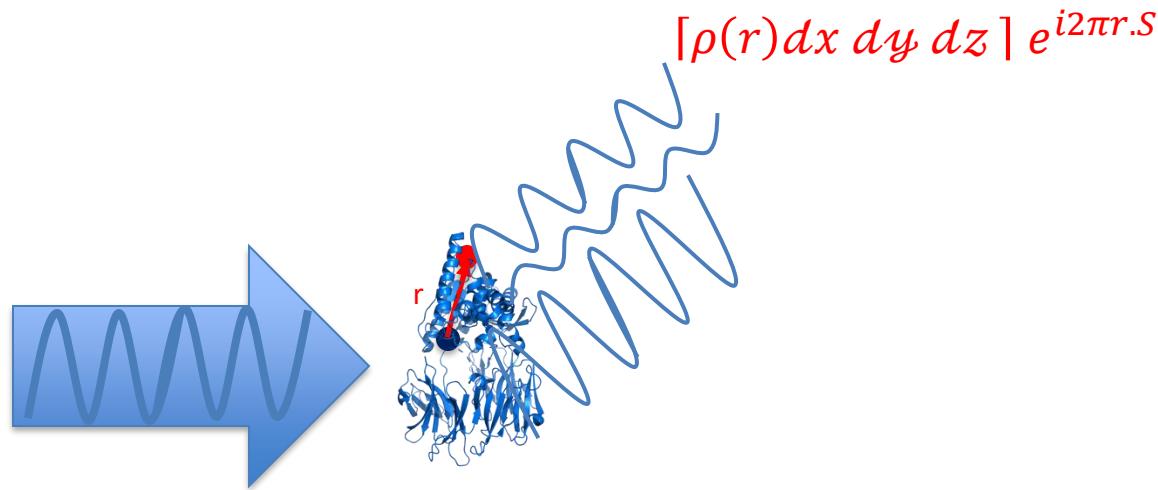
Diffraction from a molecule



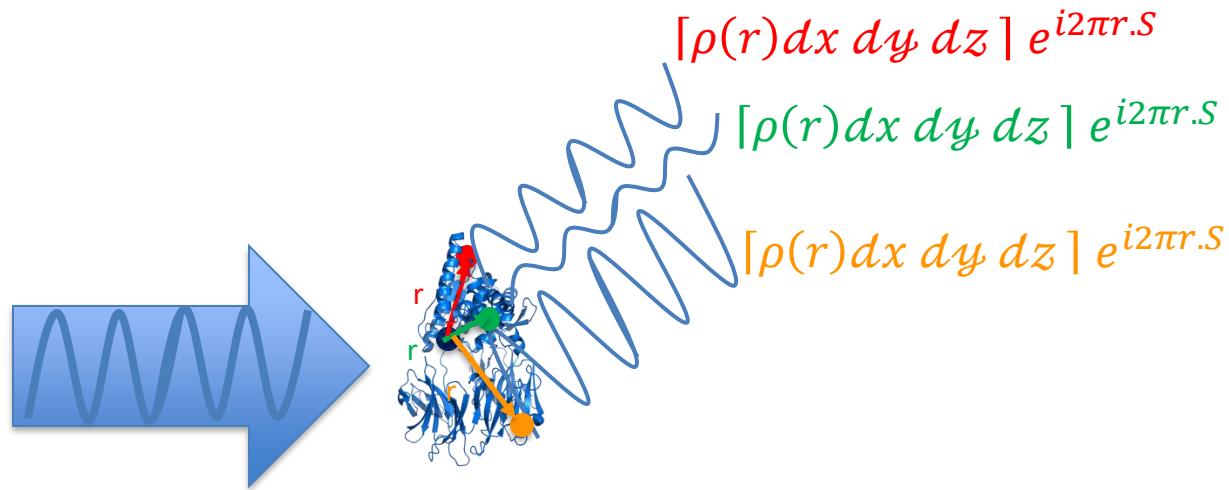
Diffraction from a molecule



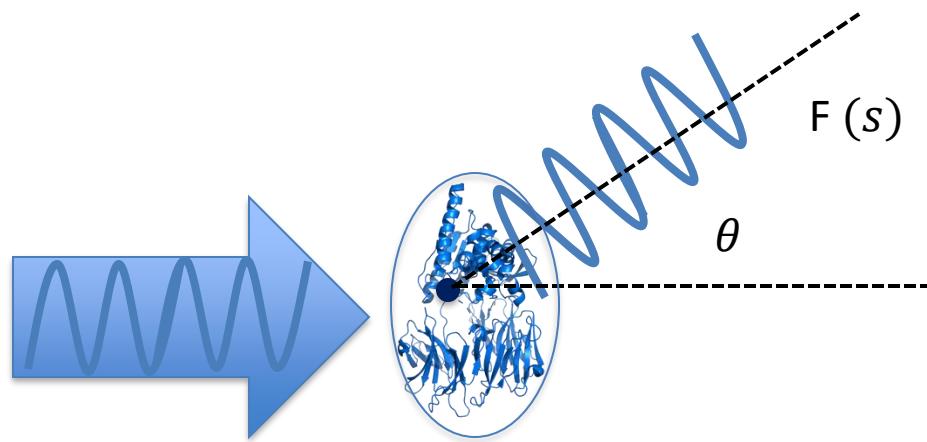
Diffraction from a molecule



Diffraction from a molecule

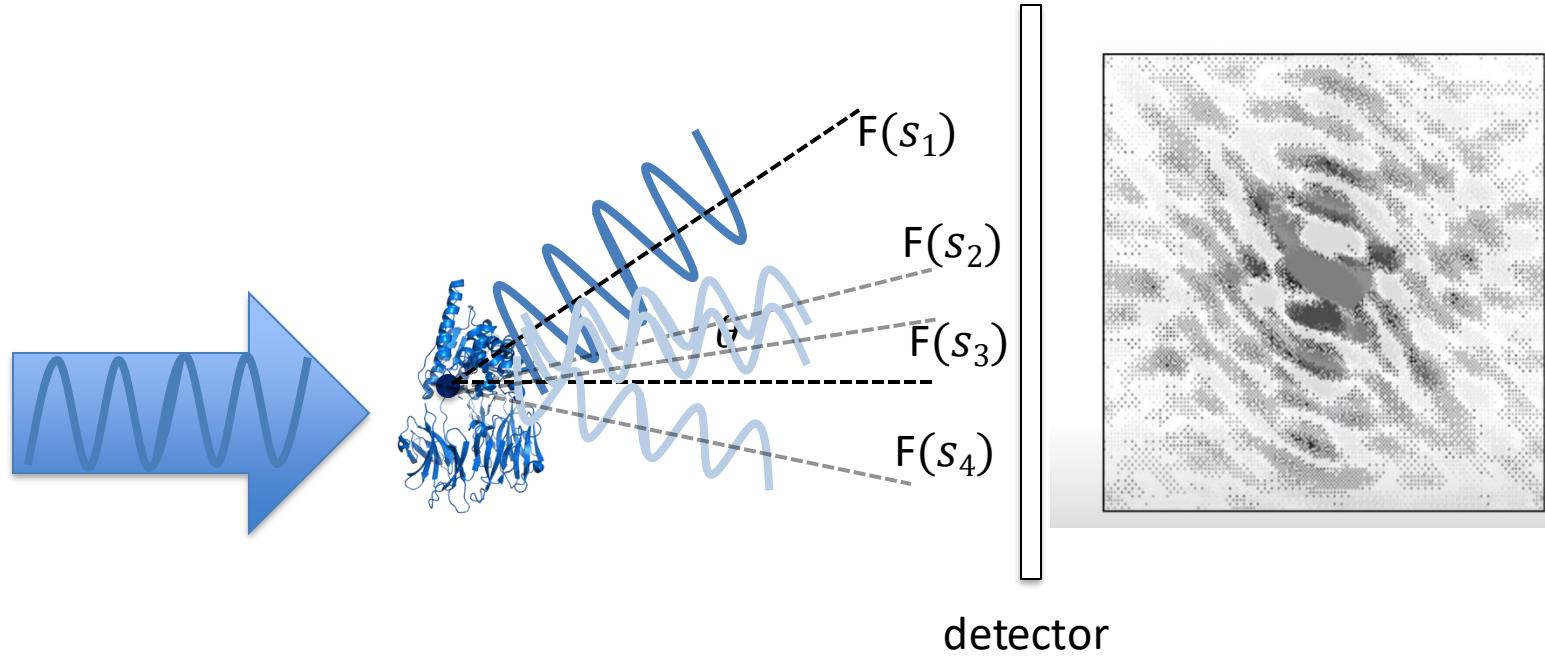


Diffraction from a molecule



$$F(s) = \iiint [\rho(r) dx dy dz] e^{i2\pi r \cdot s}$$

Diffraction from a molecule



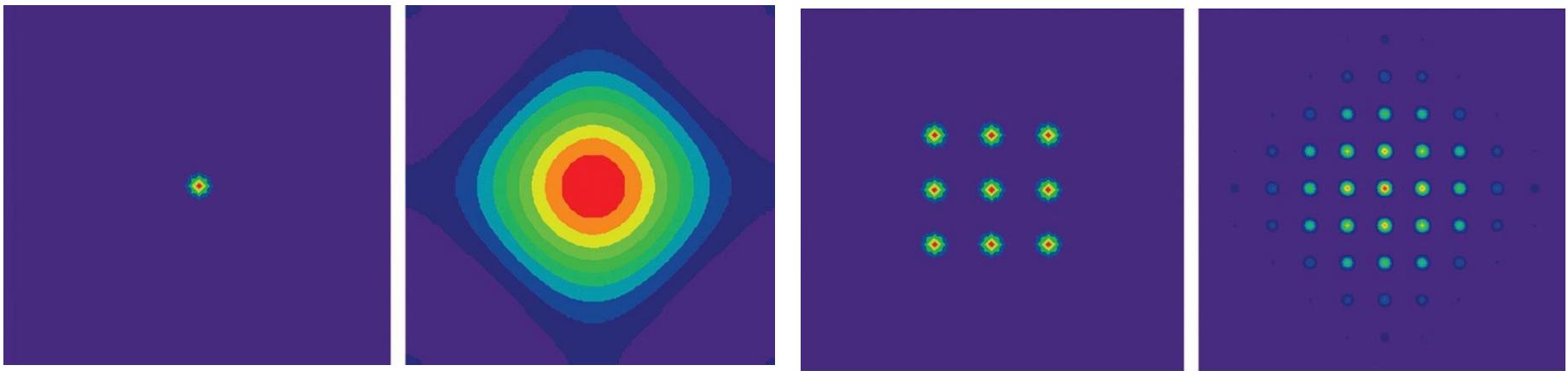
$$F(s) = \iiint \rho(r) e^{i2\pi r \cdot S} dx dy dz$$

All atoms in the molecule contribute to each diffracted X-ray and to the calculation of each structure factor

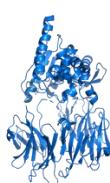
Why do we need protein crystals?

- X-ray diffraction of a **single molecule** is very **weak** and yields limited structural information
- By having protein molecules in repeating units in a **3-D array**, scattered X-rays cancel each other out in most directions except for **discrete diffraction spots** (“amplified signal”)

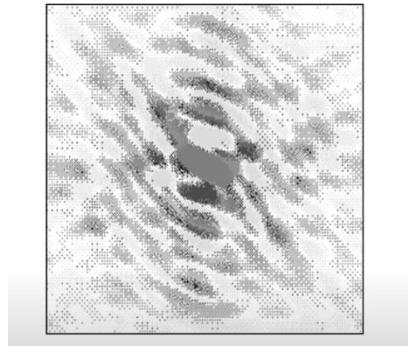
2-D diffraction pattern



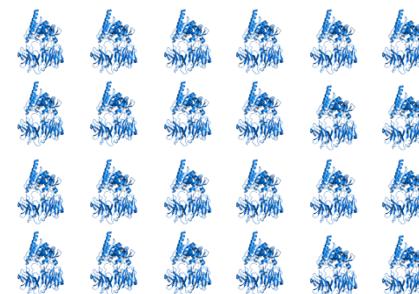
© Garland Science 2010



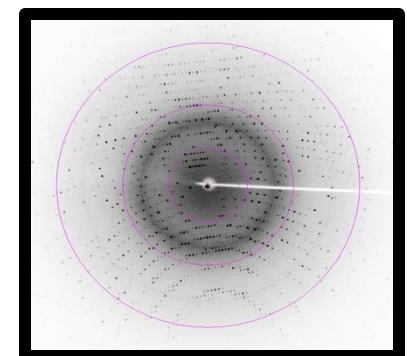
object



Diffraction pattern

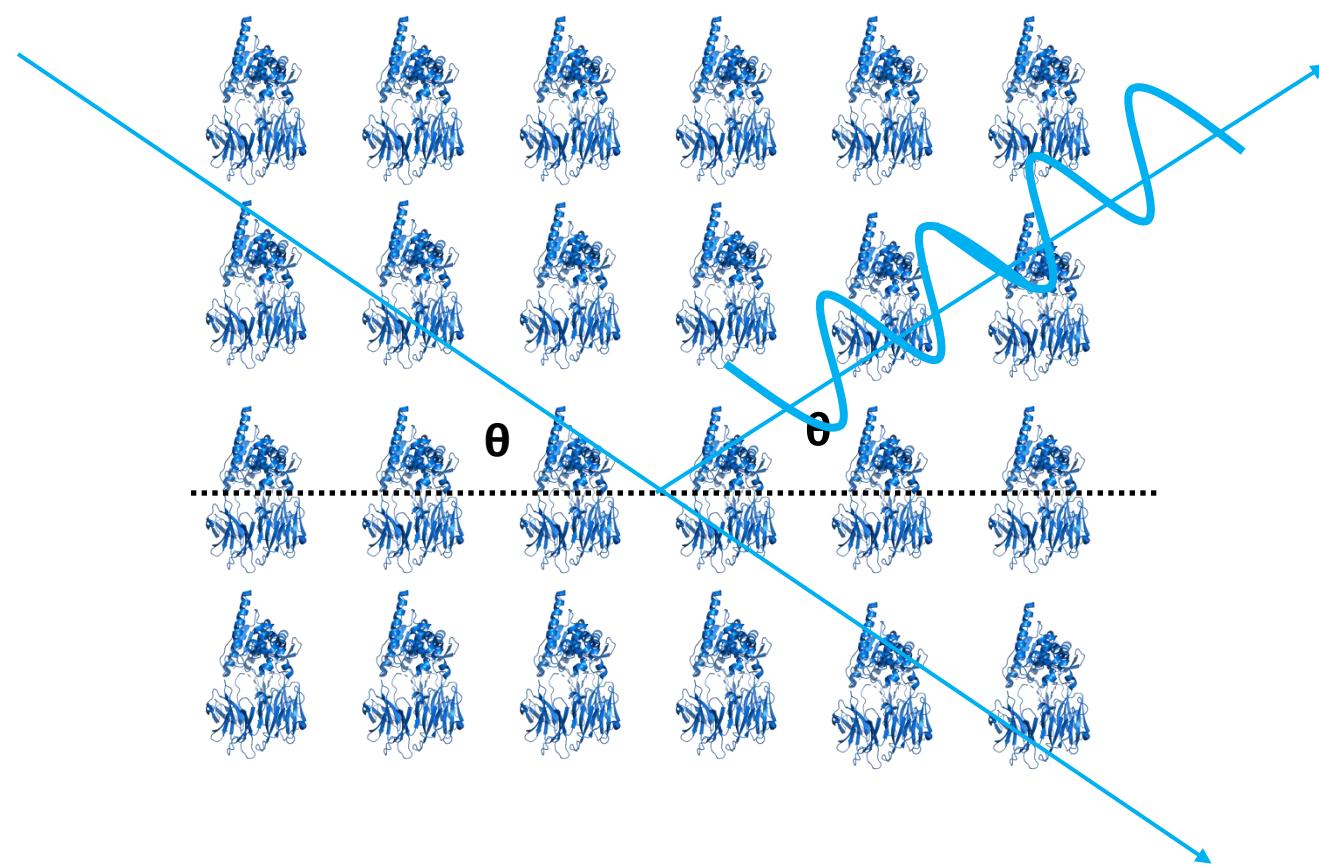


object

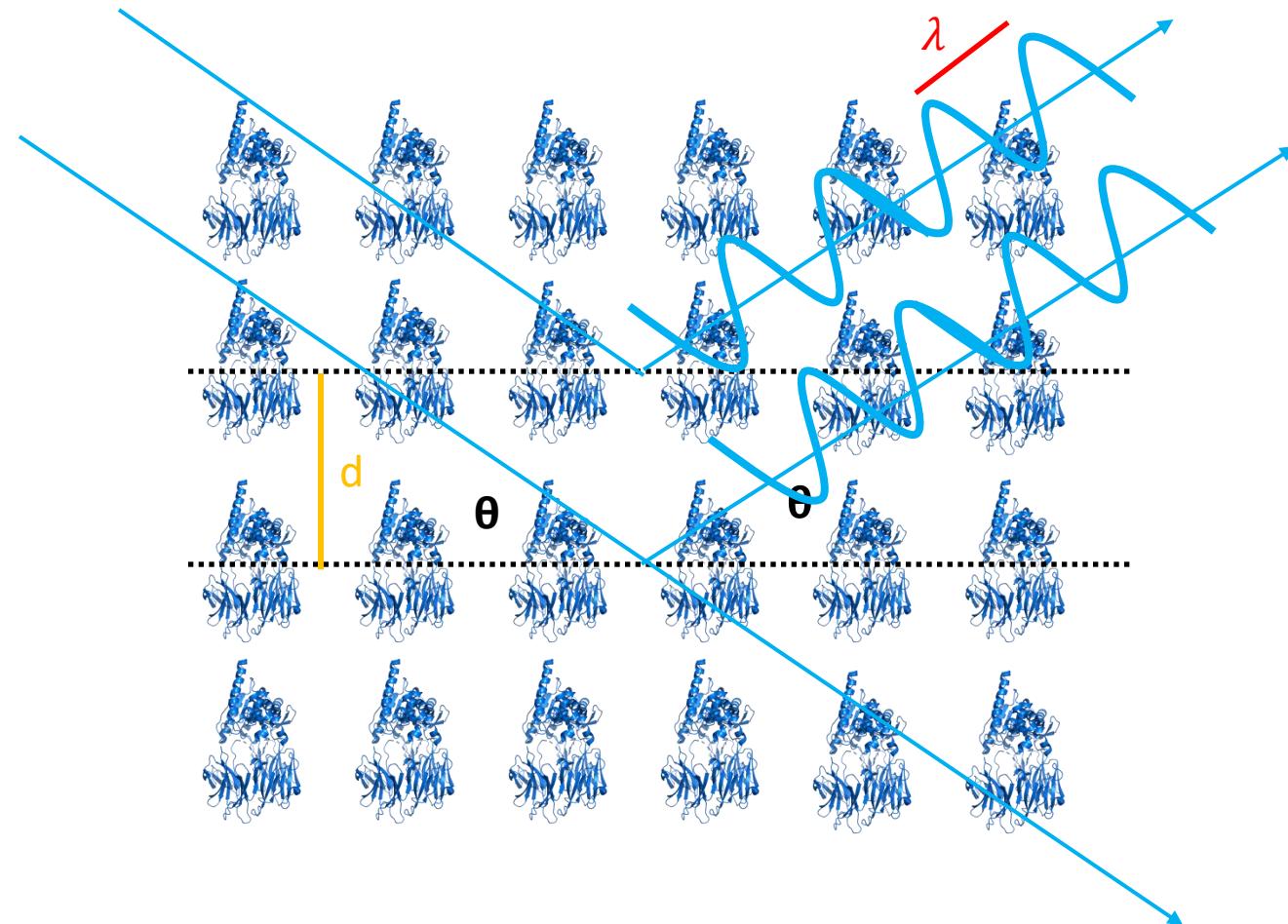


Diffraction pattern

Diffraction from a protein crystal

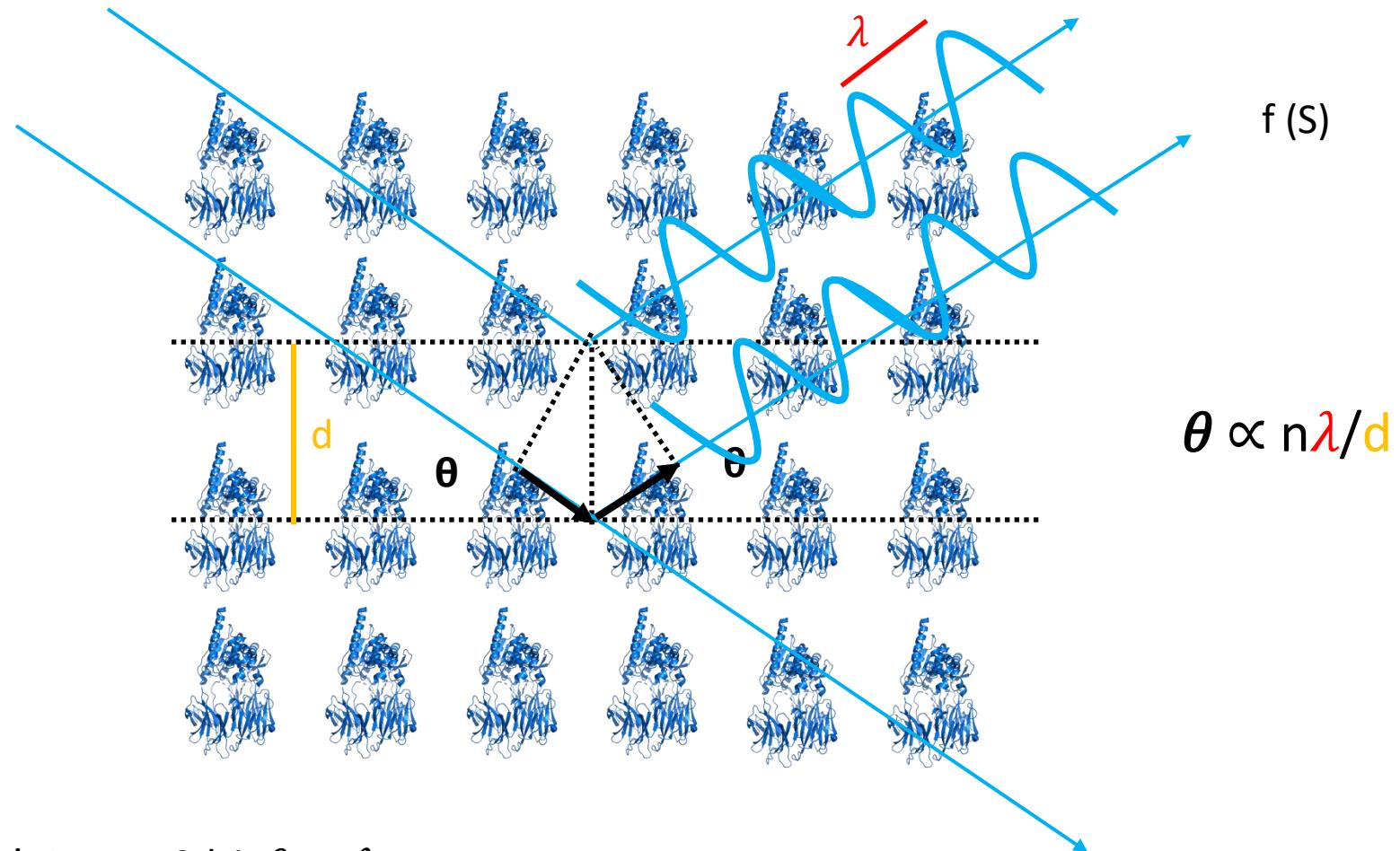


Diffraction from a protein crystal



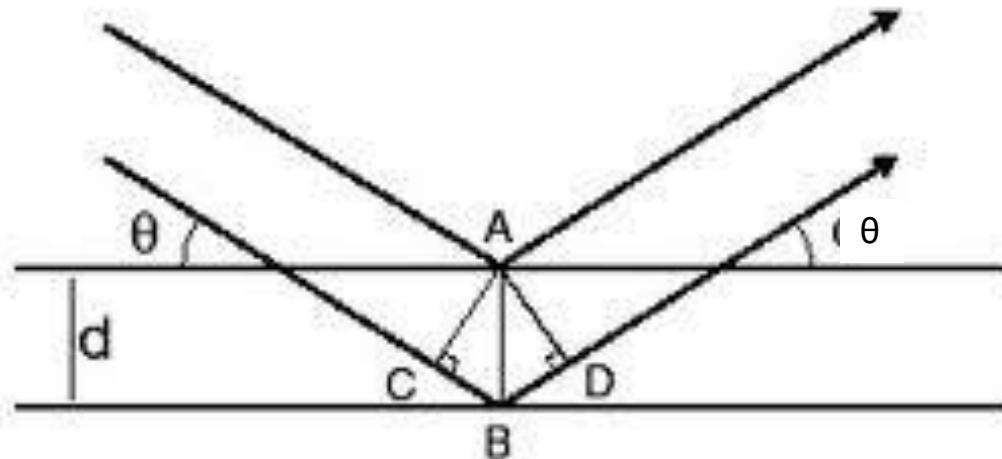
Bragg's Law

Diffraction from a protein crystal



X-ray diffraction – Bragg's law

Bragg's Law
determines the
position of spots



$$\sin\theta = \frac{BD}{AB}$$

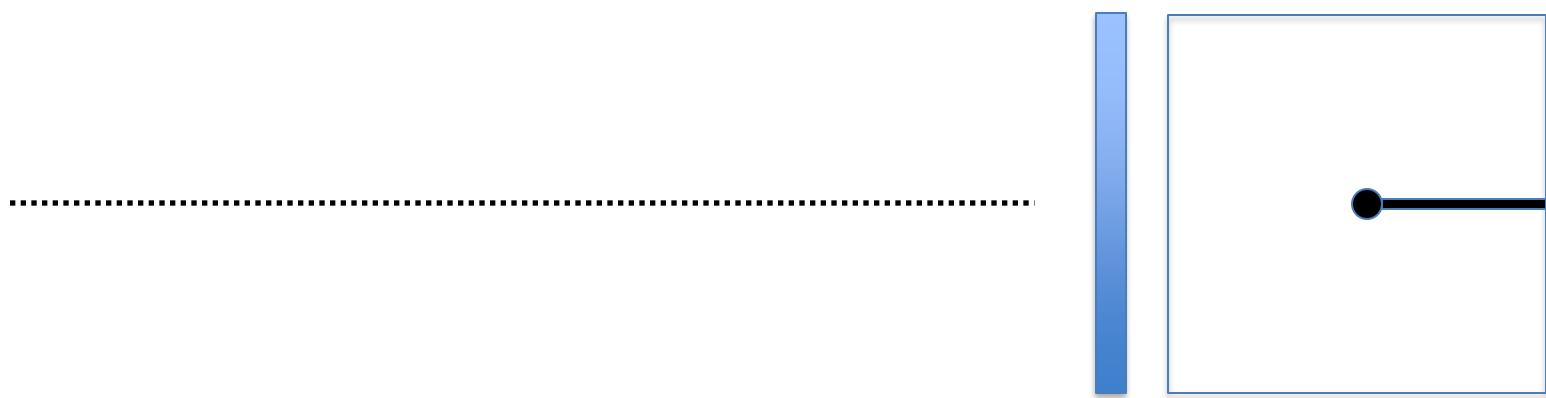
$$BD = AB\sin\theta = d\sin\theta$$

Condition for constructive interference
Path length difference = $n\lambda$

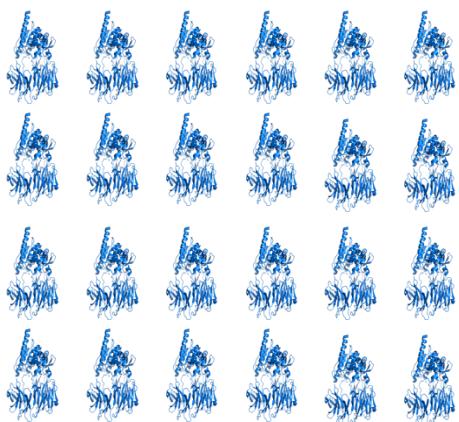
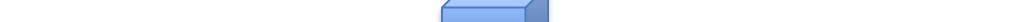
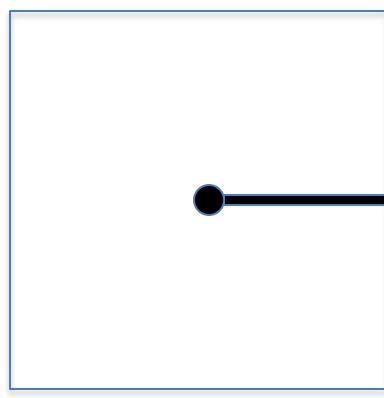
$$CB + BD = 2BD = n\lambda$$

$$2d\sin\theta = n\lambda$$

Diffraction from a protein crystal

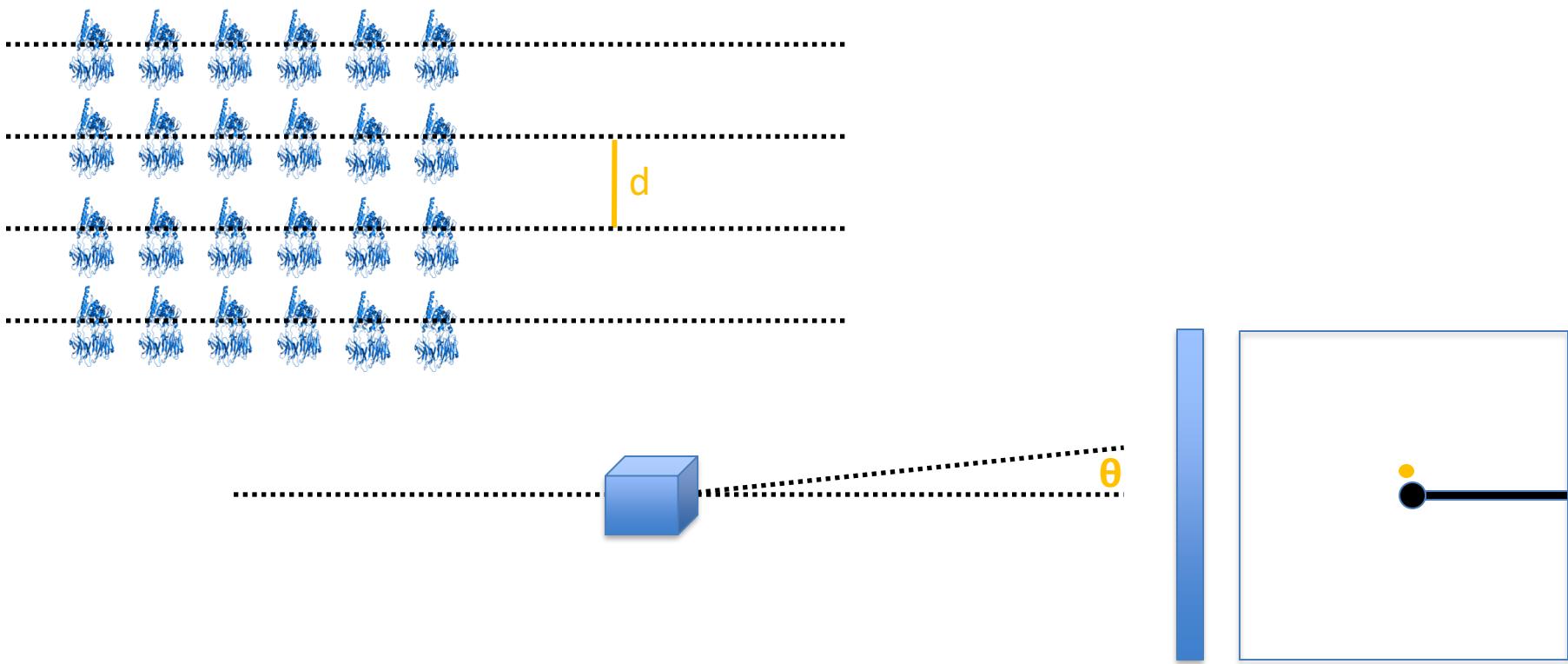


Diffraction from a protein crystal

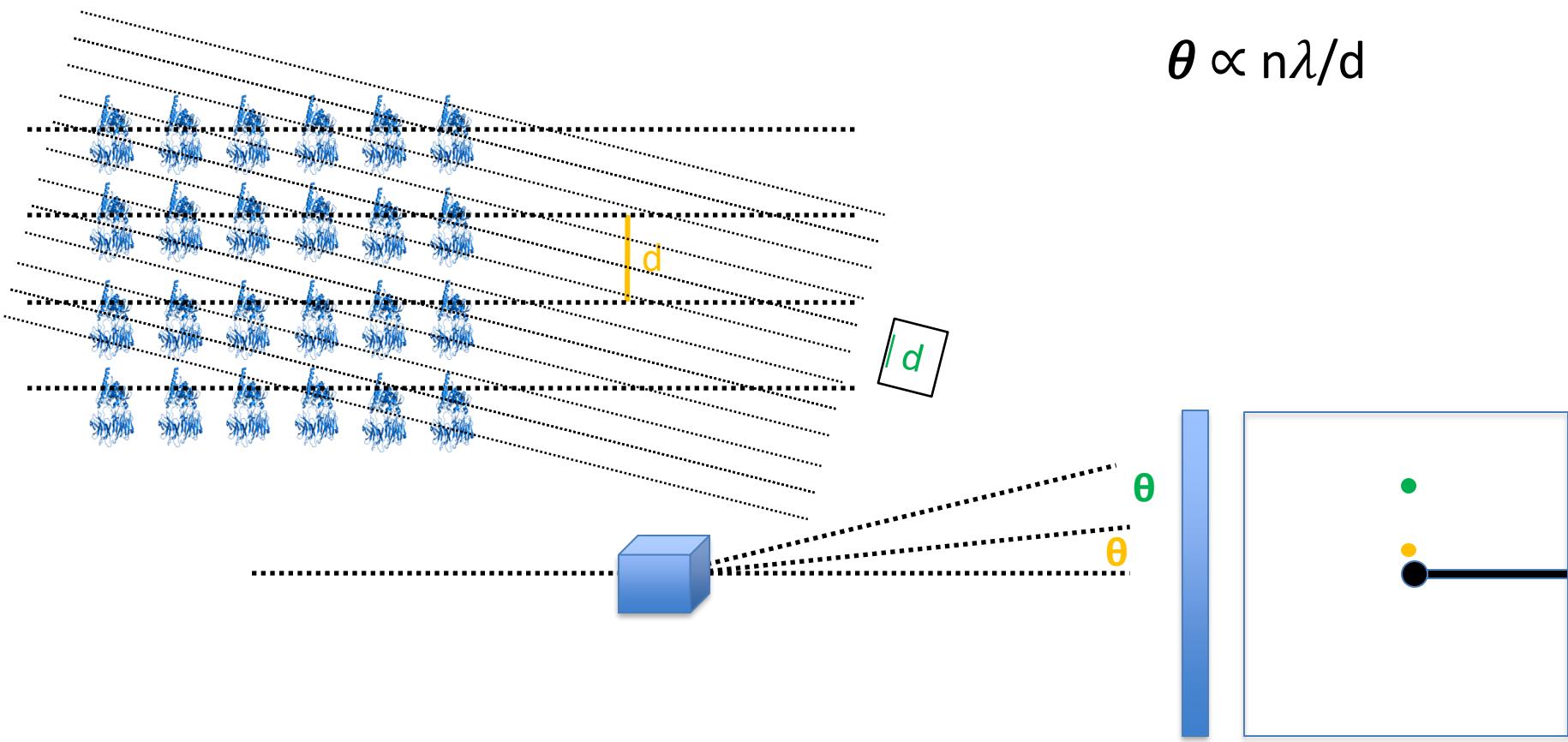


Diffraction from a protein crystal

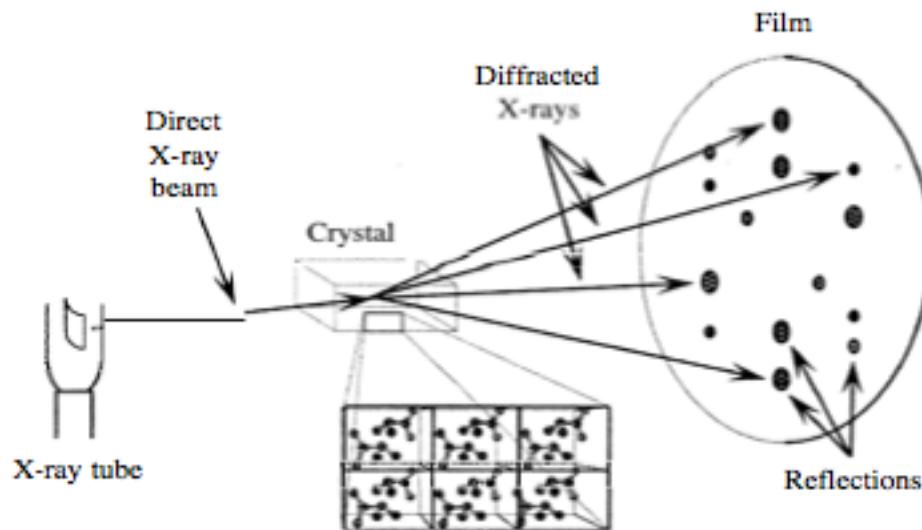
$$\theta \propto n\lambda/d$$



Diffraction from a protein crystal



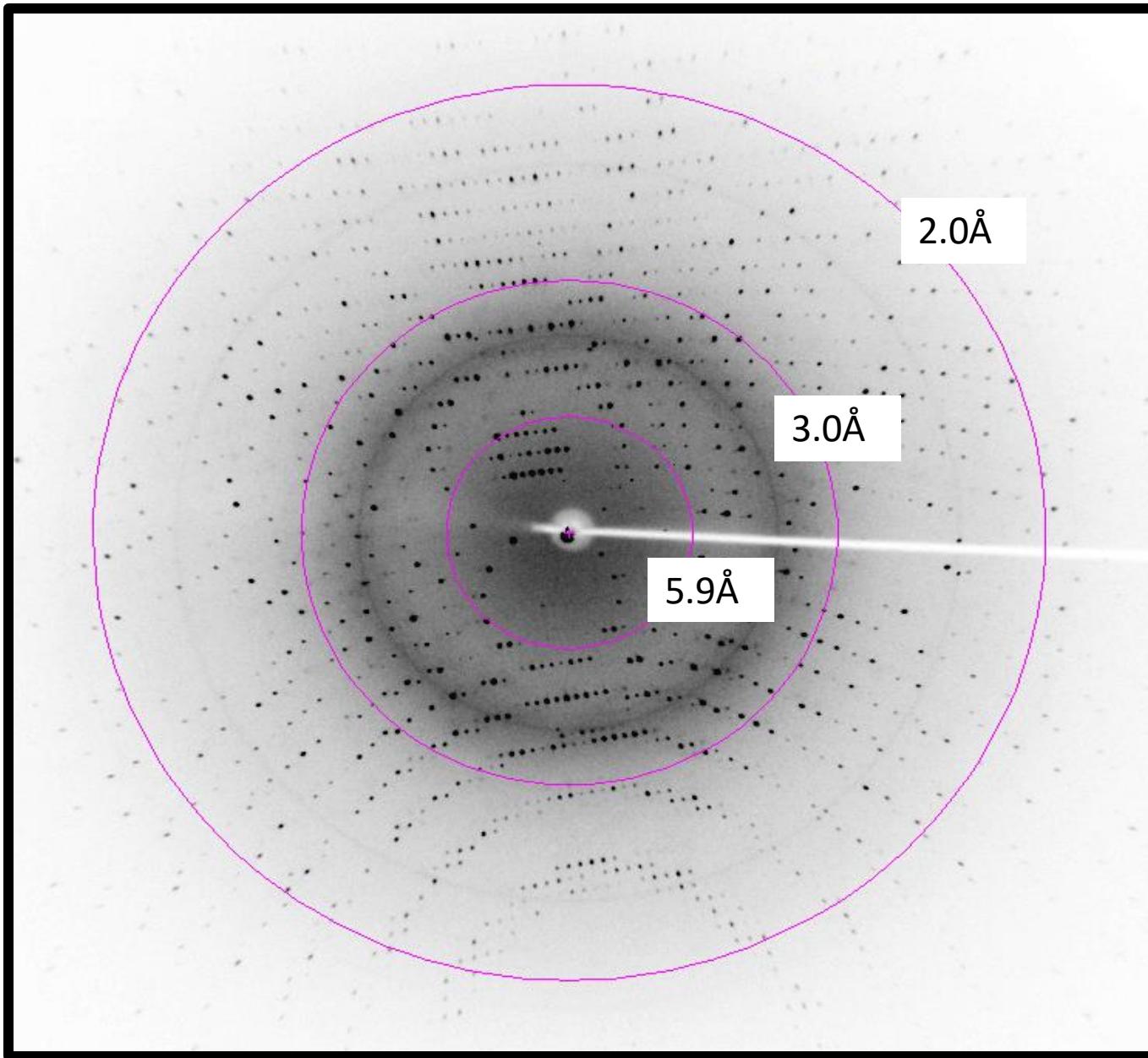
Diffraction from a protein crystal



Rhodes, G. (2006)

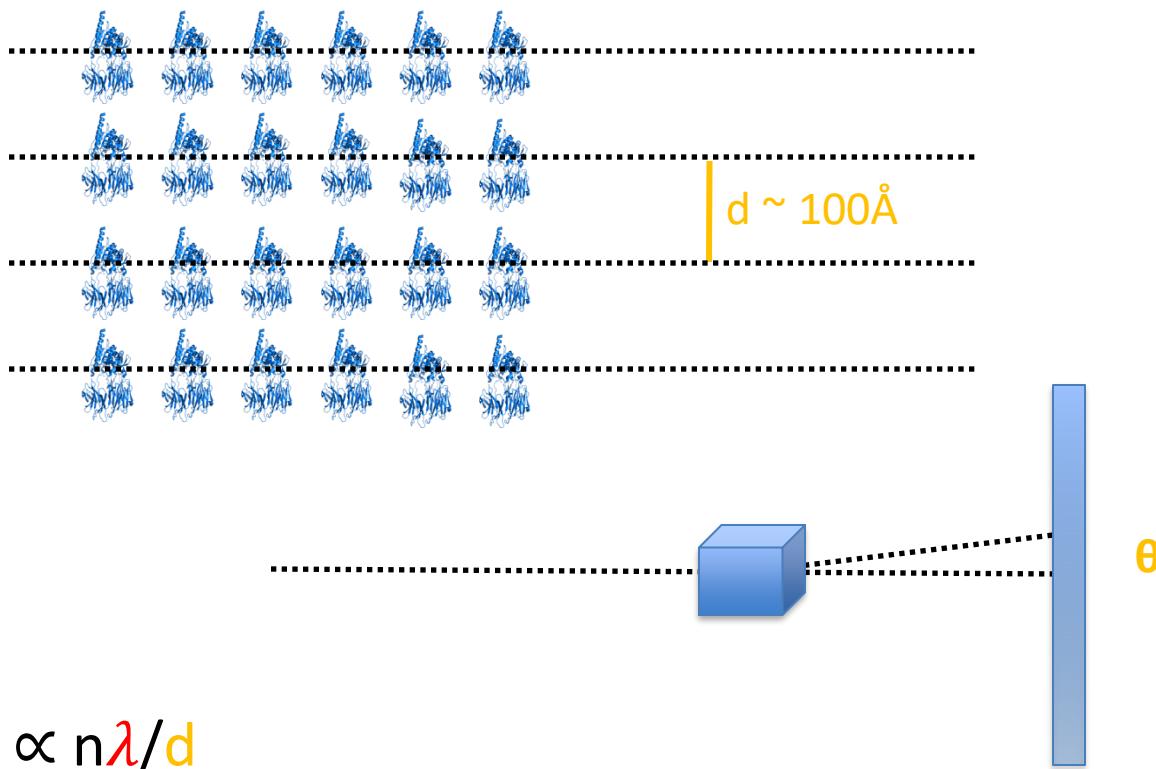
The diffraction pattern

- Diffracted X-rays – **discrete** points originate from the **constructive interference** from scattered X-rays by atoms **repeated** in the crystal **lattice**
- Bragg's law determines the **position** of the spots and the content of the crystal determines their **intensity**.



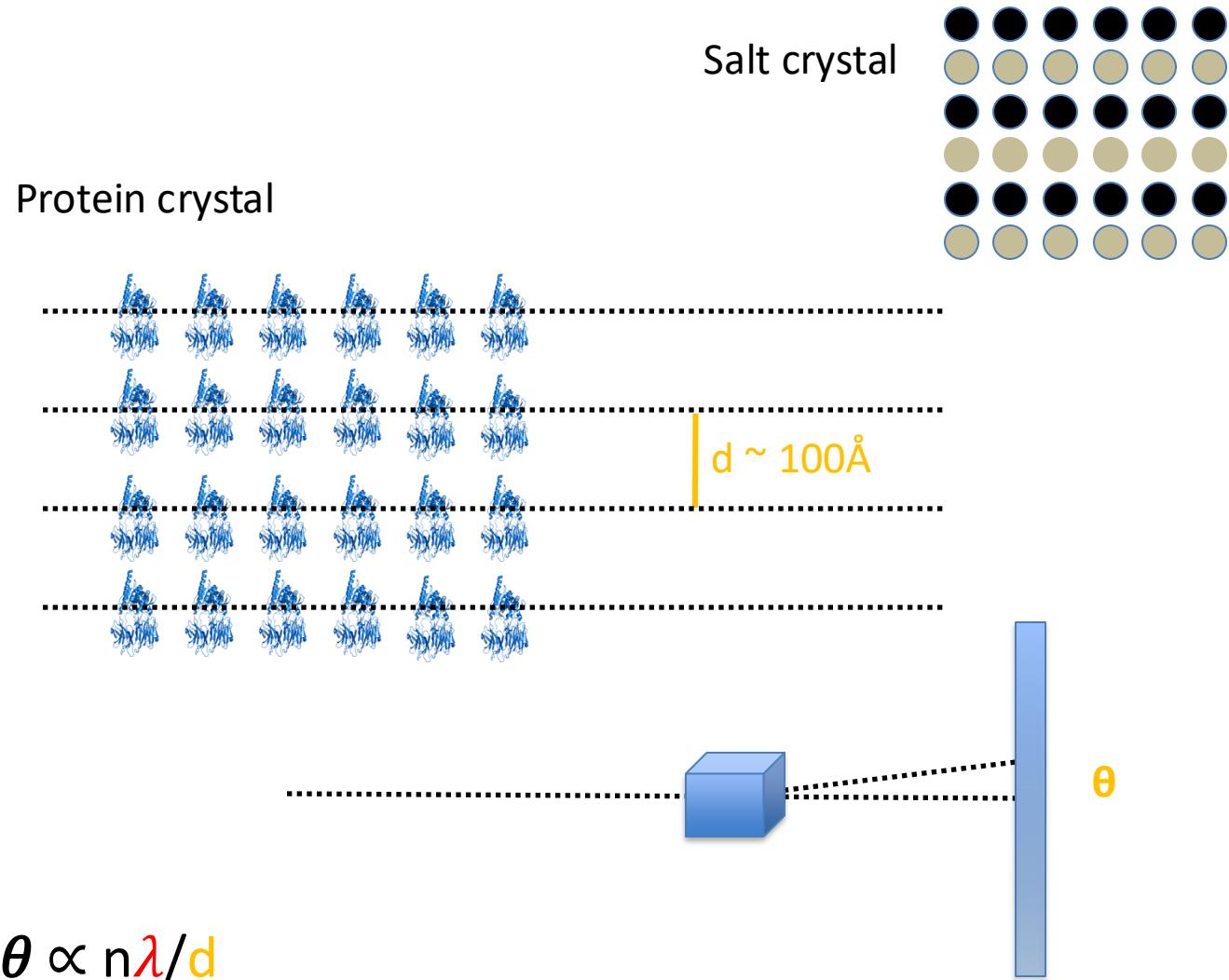
Diffraction from a protein crystal

Protein crystal

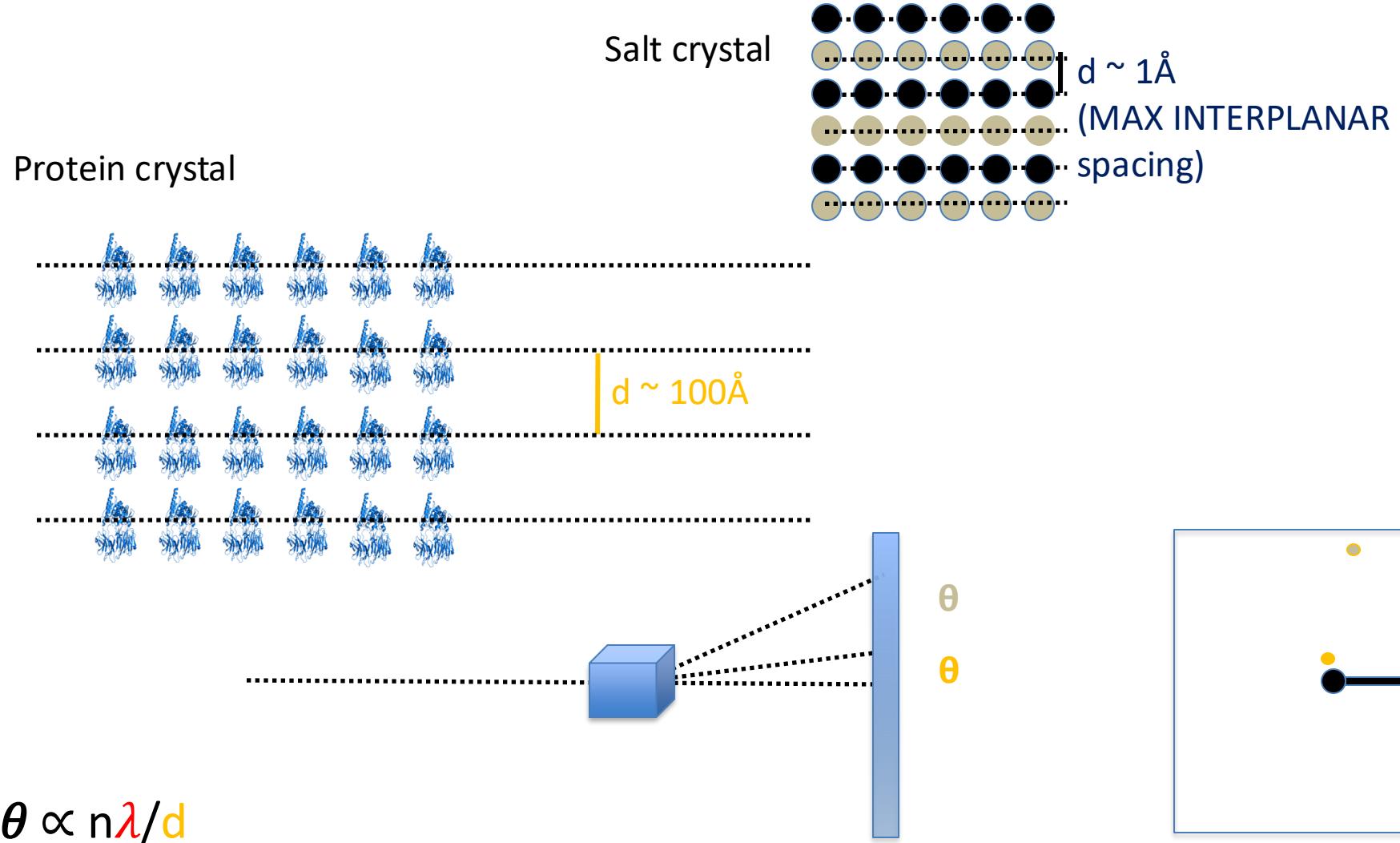


$$\theta \propto n\lambda/d$$

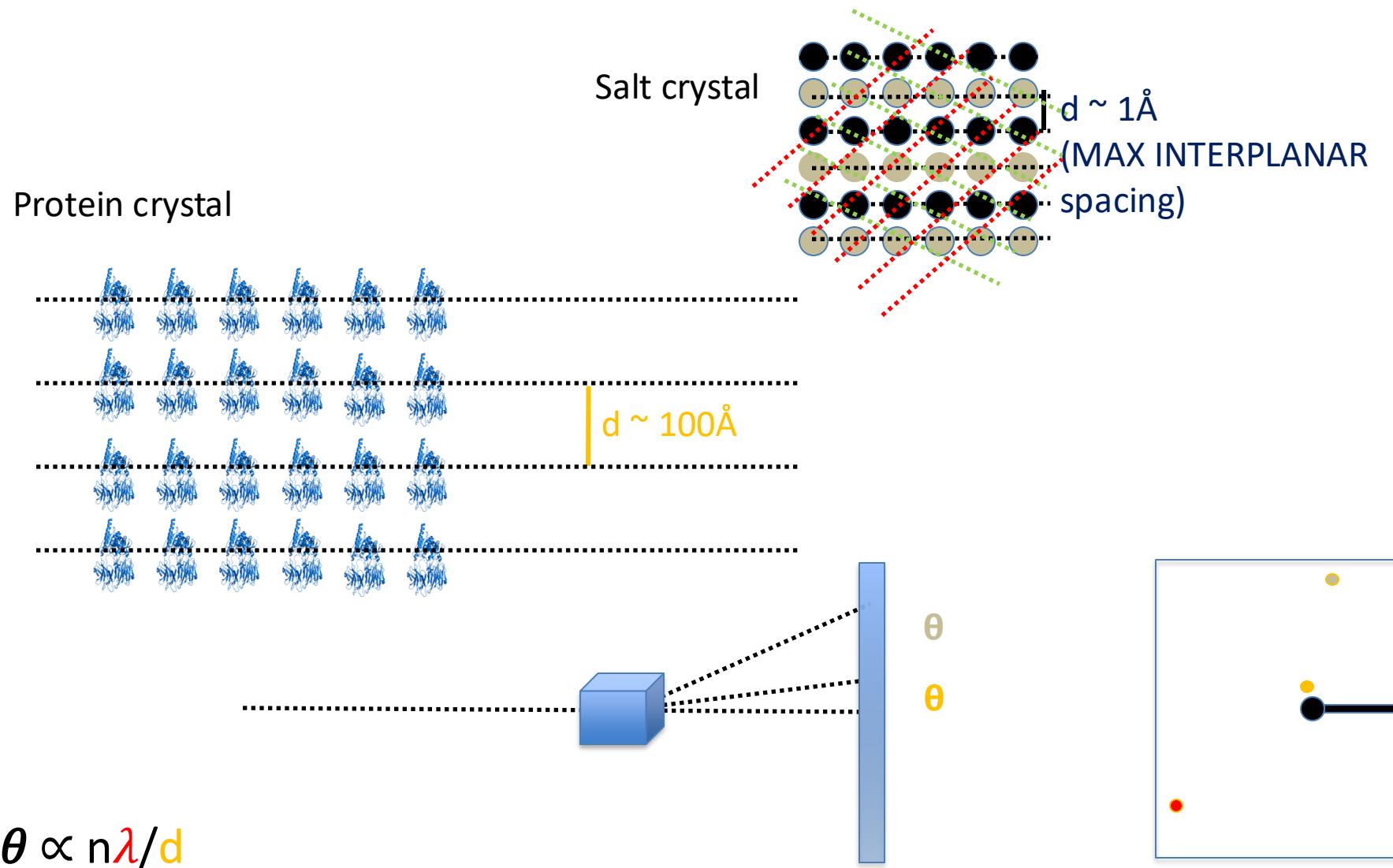
Diffraction from a protein crystal



Diffraction from a protein crystal



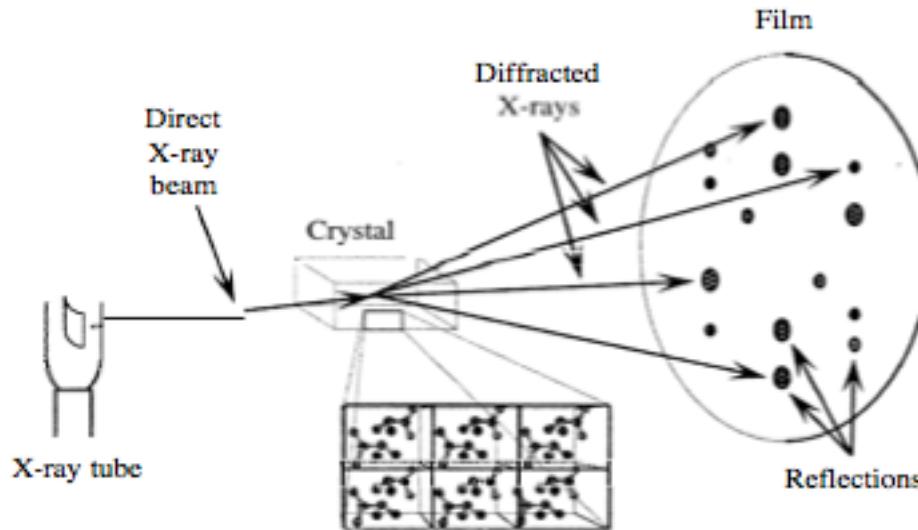
Diffraction from a protein crystal



Salt diffraction

- Only small d , big diffracting angles only:

The diffraction experiment – data collection

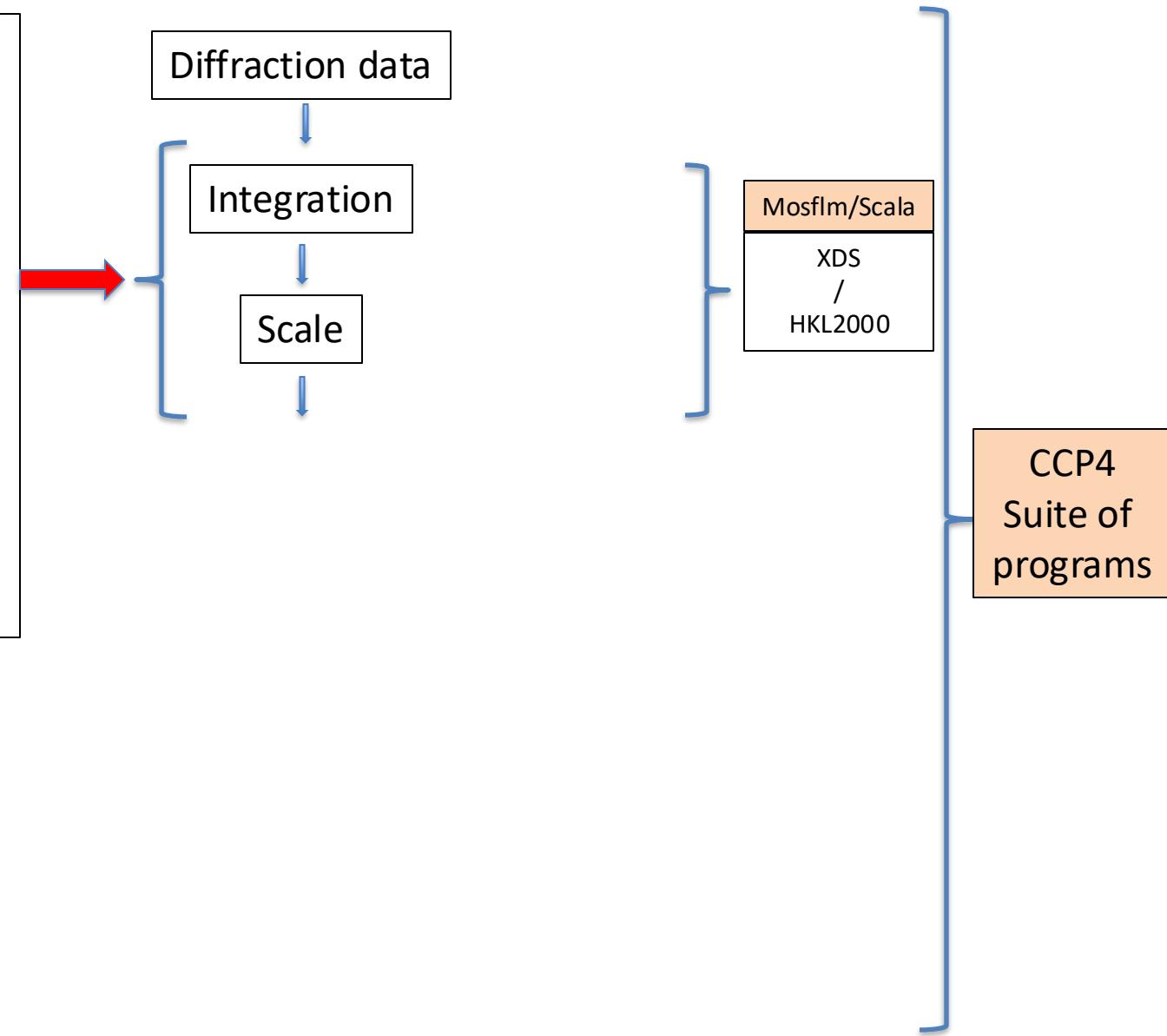


Rhodes, G. (2006)

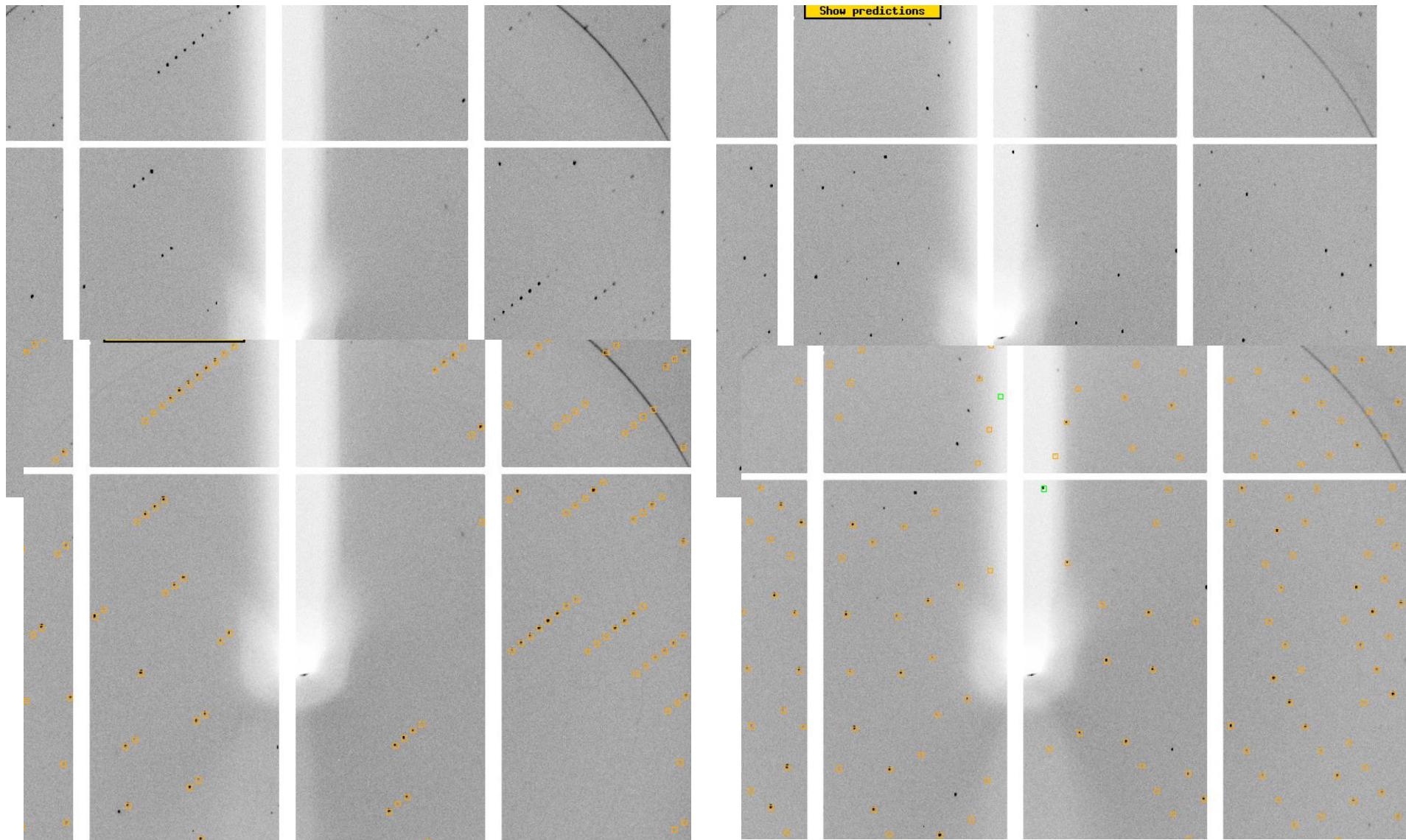
Crystal **rotates** around itself in order to collect all possible reflections – rotate the Ewald Sphere- collect a full data set
The rotation range depends on the symmetry of the crystal – higher symmetry less rotation range necessary

Data processing and statistics

- Calculate cell parameters
- Refine cell parameters
- Calculate space group;
- Scale intensities and errors;
- Transform intensities to structure factor amplitudes;
- OUTPUT file: list of measured reflections with their intensities and their errors. 'Mtz file'**



Data processing and statistics



Data processing and statistics

X-ray source & Detector
Wavelength (Å)
Space group
Cell (Å °)
Resolution range (Å)
Number of observations
Unique reflections
Completeness
Rmerge
Mean I/σ(I)

Statistics for data set and high resolution shell

Completeness should be around 95% and most of the time 100%

Rmerge should be $\leq 10\%$

Mean $I/\sigma(I)$ (signal to noise ratio) should be ≥ 2

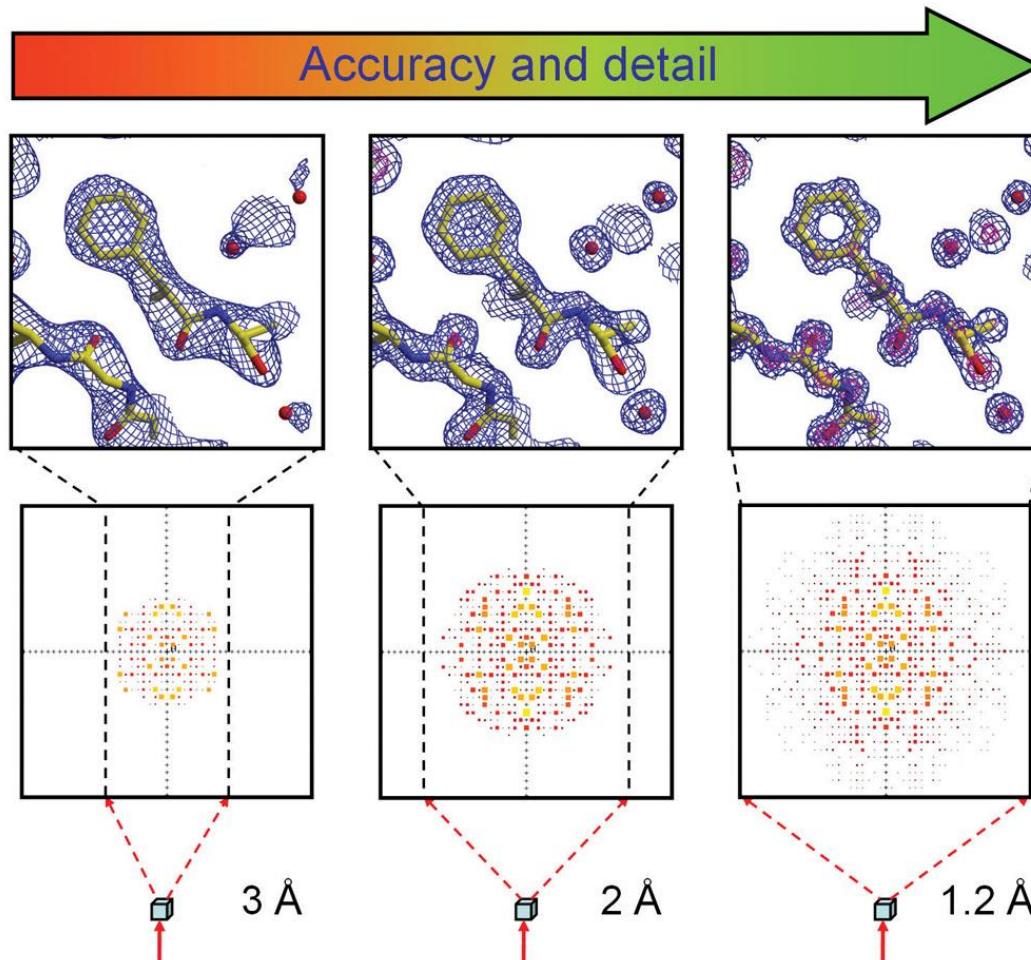
$$R_{\text{merge}} = \frac{\sum_{hkl} \sum_{i=1}^N |I_{(hkl)i} - \bar{I}_{(hkl)}|}{\sum_{hkl} \sum_{i=1}^N I_{(hkl)i}}$$

Data processing and statistics

Data processing and statistics

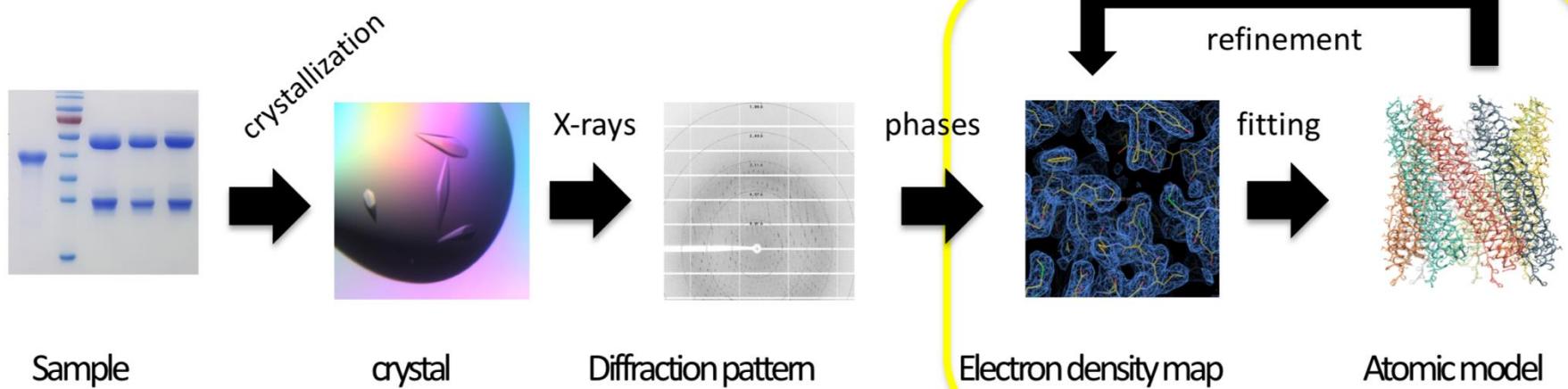
	Aurora A	SPF
X-ray source & Detector	SLS PXIII Pilatus	SLS PXIII Pilatus
Wavelength (Å)	1	1
Space group	P6 ₁ 22	P2 ₁
Cell (Å °)	82.3 82.3 169.4 90 90 120	71.9 73.8 94.4 90 96.3 90
Resolution range (Å)	66-2.9 (3-2.9)	30 -1.6 (1.7-1.6)
Number of observations	92281	401202
Unique reflections	8204	128933
Completeness	100%	99%
Rmerge	12.5% (90%)	5% (30%)
Mean I/σ(I)	14.2 (2.5)	11.5 (2.8)

X-ray diffraction - resolution

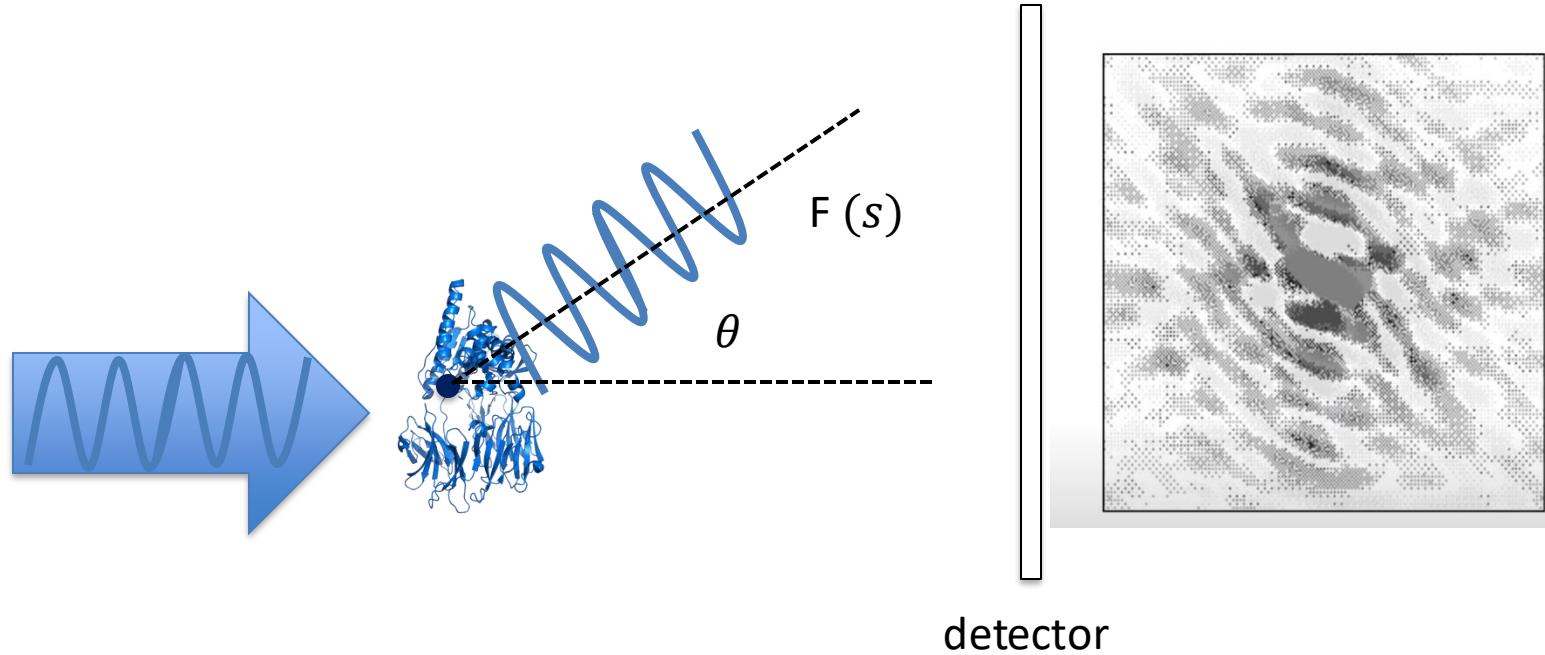


Content of lectures

- **Why x-rays and why crystals?**
- **Macromolecular crystallization**
- **Crystal packing**
- **The diffraction experiment**
- The phase problem
- Molecular replacement
- Refinement and validation



Diffraction from a molecule



$$F(s) = \iiint \rho(r) e^{i2\pi r \cdot S} dx dy dz$$

All atoms in the molecule contribute to each diffracted X-ray and to the calculation of each structure factor

Fourier Transform

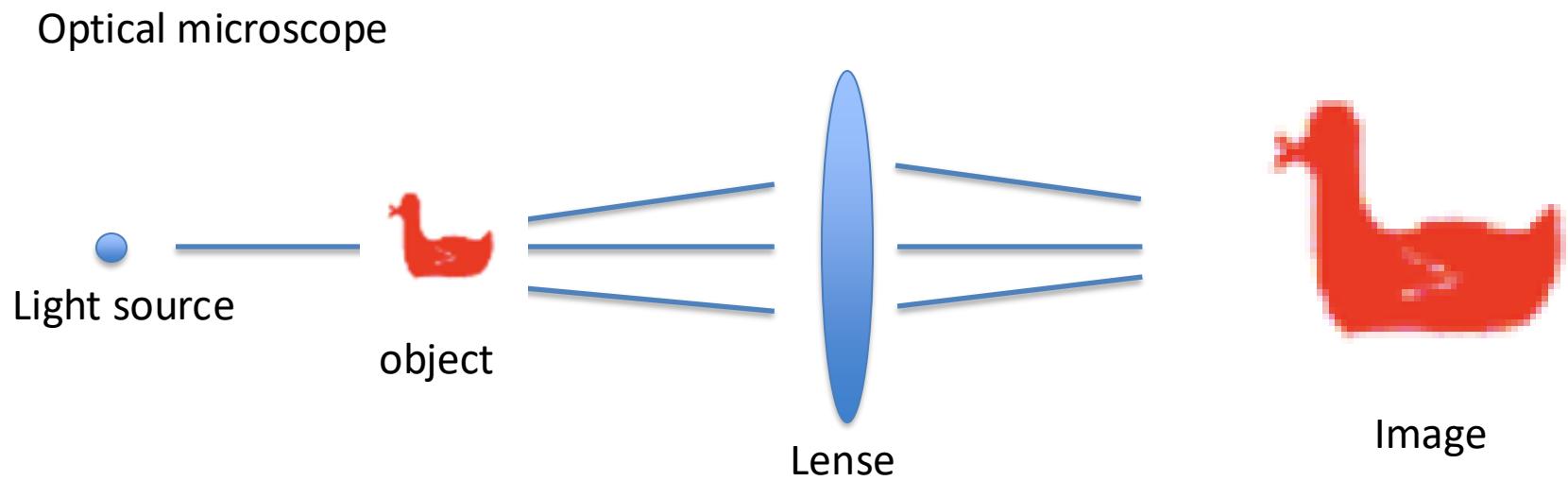
- The structure factor is the Fourier transform of the electron density. The electron density is the inverse Fourier transform of the structure factor.

$$F(s) = \iiint \rho(r) e^{i2\pi r \cdot S} dx dy dz \quad F(S) = \text{FT } \rho(x, y, z)$$

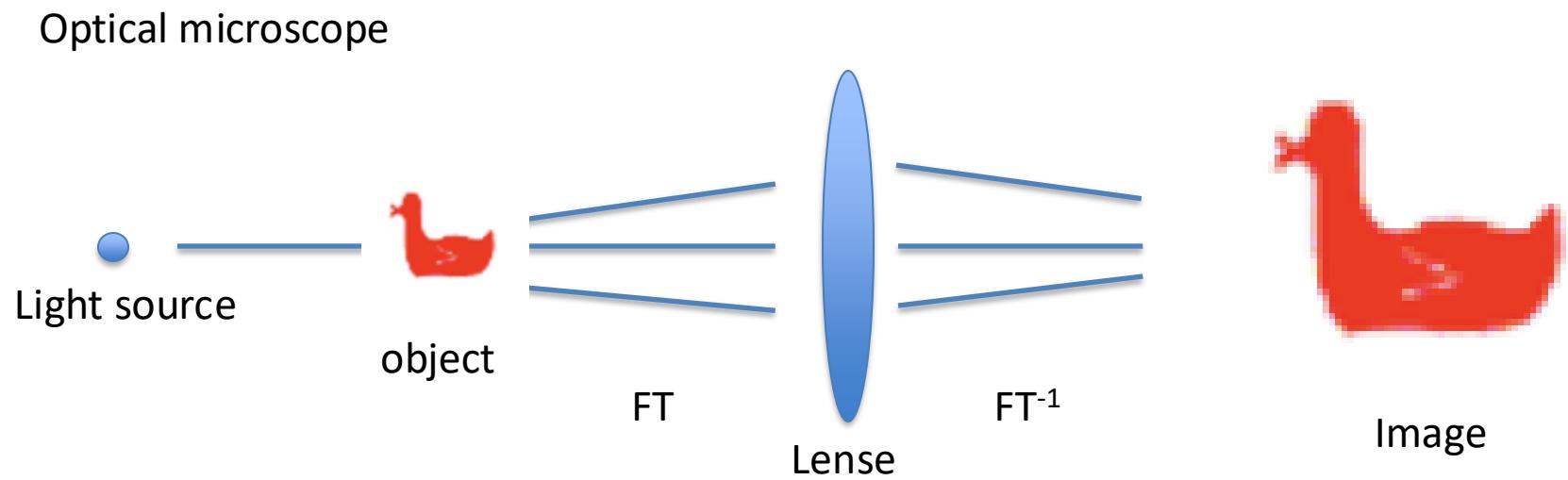
$$\rho(r) = \iiint F(s) e^{-i2\pi r \cdot S} dS \quad \rho(x, y, z) = \text{FT}^{-1} F(S)$$

$\rho(r)$ or $\rho(x, y, z)$ is in real space (\AA), $F(S)$ is in reciprocal space (\AA^{-1}).

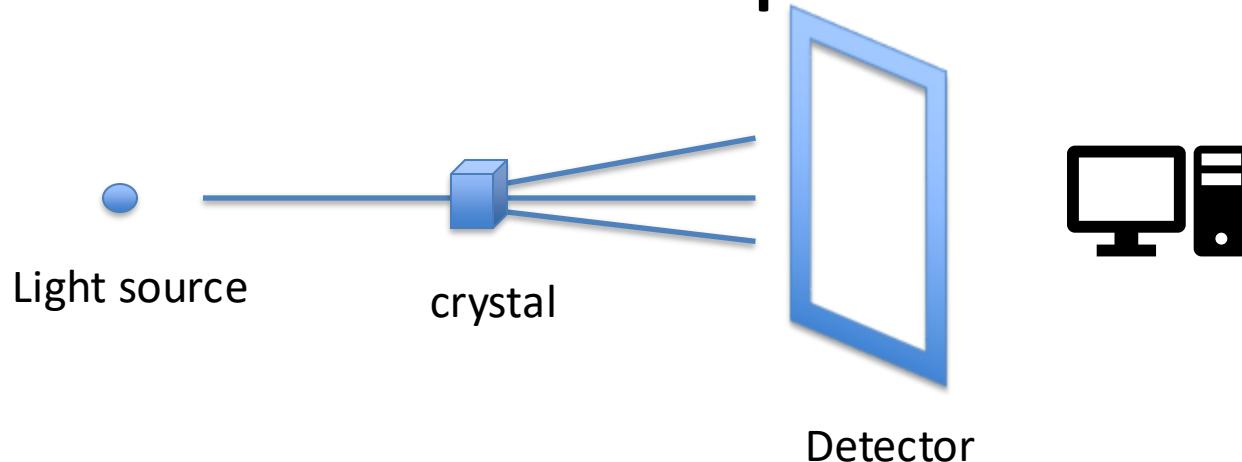
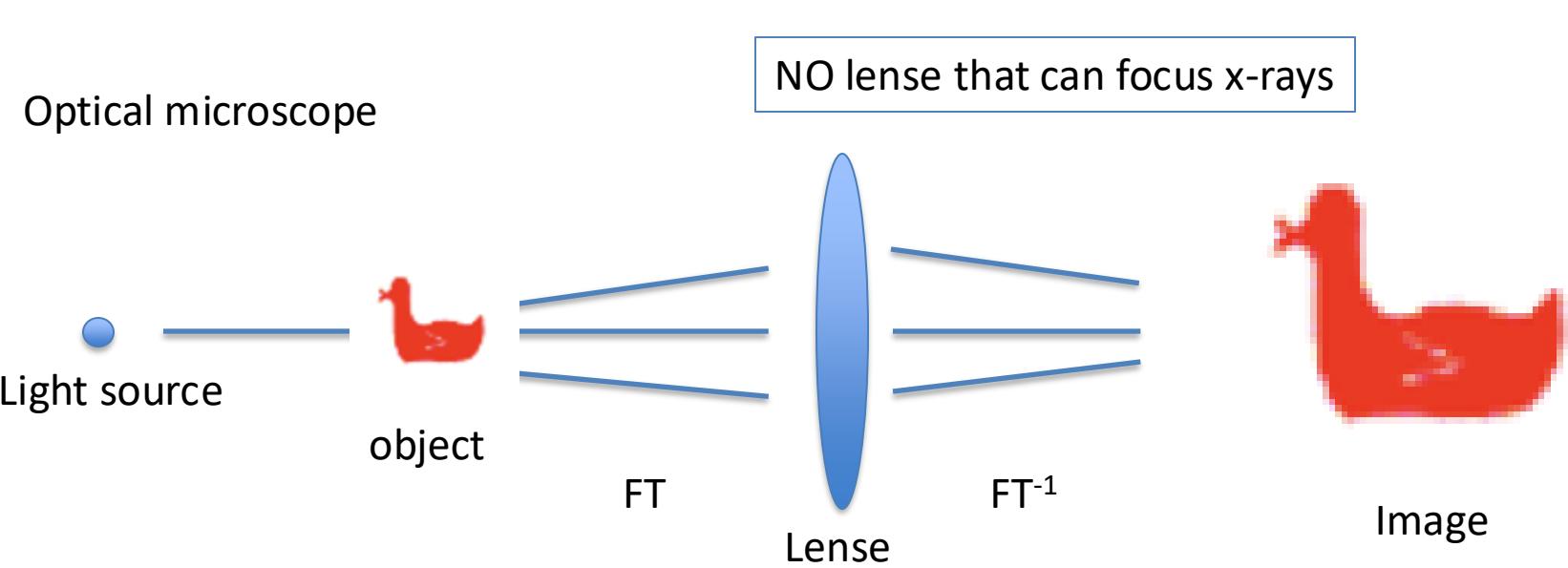
The diffraction experiment



The diffraction experiment



The diffraction experiment



The electron density calculation

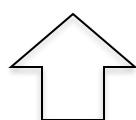
- The structure factor is the Fourier transform of the electron density. The electron density is the inverse Fourier transform of the structure factor.

$$F(s) = \iiint \rho(r) e^{i2\pi r \cdot S} dx dy dz$$

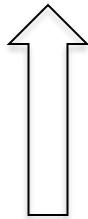
$$F(S) = \text{FT } \rho(x, y, z)$$

$$\rho(r) = \iiint F(s) e^{-i2\pi r \cdot S} dS$$

$$\rho(x, y, z) = \text{FT}^{-1} F(S)$$



Want this



Diffracted X-rays

So what is the problem??

The phase problem

$$\rho(xyz) = FT^{-1} F(S)$$

The phase problem

$$\rho(xyz) = FT^{-1} f(S)$$

- $F(S)$ is the structure factor that represents the diffracted x-rays and it is a wave with **amplitude** and **phase** (a complex number)

$$F(S) = A e^{2\pi i \alpha}$$

The phase problem

$$\rho(xyz) = FT^{-1} F(S)$$

- F_{hkl} is the structure factor that represents the diffracted X-rays and it is a wave with **amplitude** and **phase** (a complex number)

$$F(S) = A e^{2\pi i \alpha}$$

- In the diffraction experiment, we collect the **intensity** of the diffracted X-ray which is proportional to the module squared of the structure factor

$$I \approx |F(S)|^2 \approx A e^{2\pi i \alpha} \cdot A e^{-2\pi i \alpha} \approx A^2$$

$$A = A_0$$

The phase problem

$$\rho(xyz) = FT^{-1} F(S)$$

- F_{hkl} is the structure factor that represents the diffracted X-rays and it is a wave with **amplitude** and **phase** (a complex number)

$$F(S) = A e^{2\pi i \alpha}$$

- In the diffraction experiment, we collect the **intensity** of the diffracted X-ray which is proportional to the module squared of the structure factor

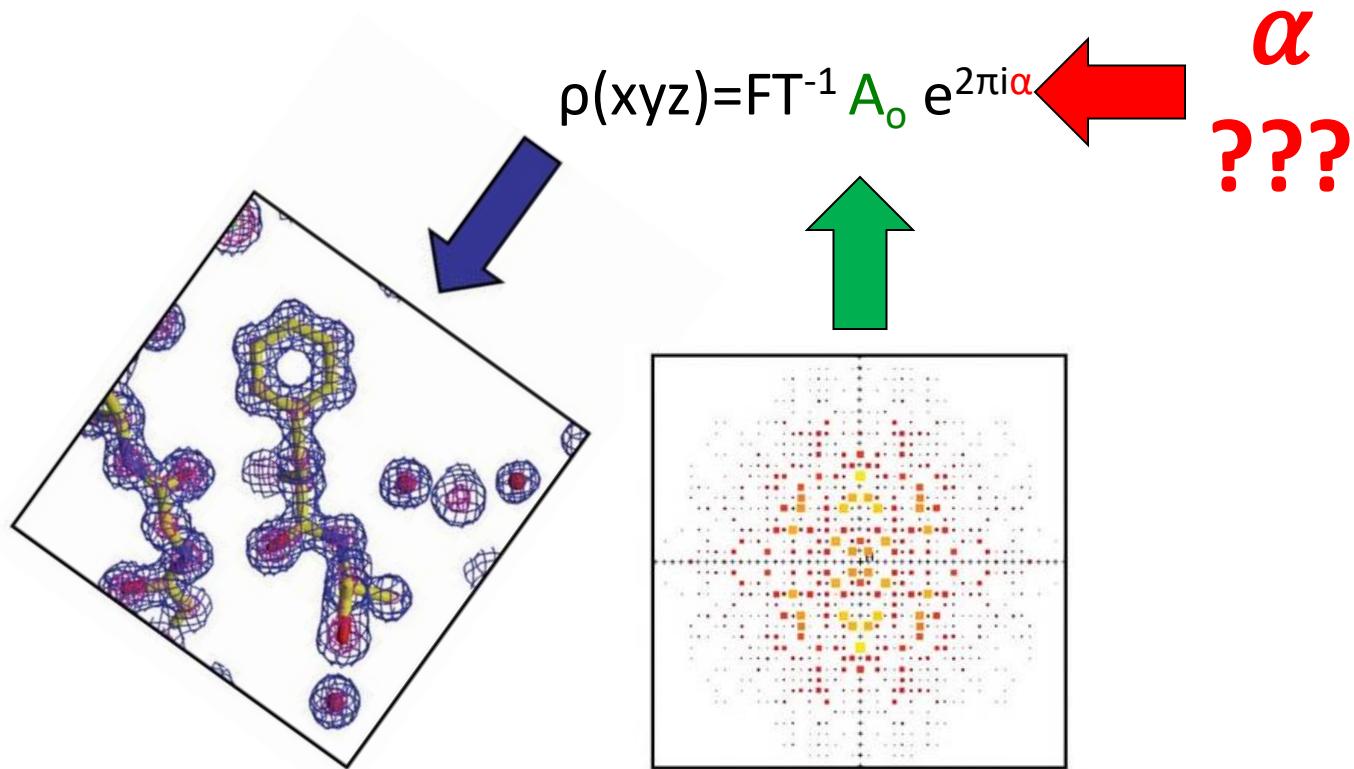
$$I \approx |F(S)|^2 \approx A e^{2\pi i \alpha} \cdot A e^{-2\pi i \alpha} \approx A^2$$

- We only record the amplitude of the structure factor, the phase information is lost!!

$$A = A_0$$

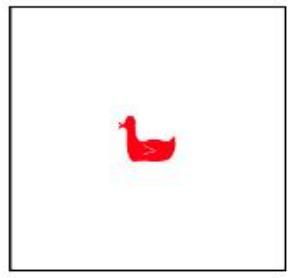
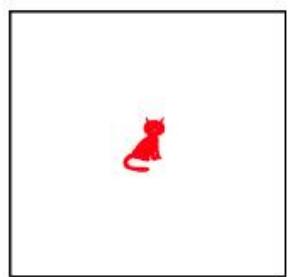
The phase problem

$$\rho(xyz) = FT^{-1} F(S)$$

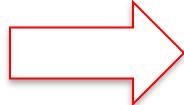
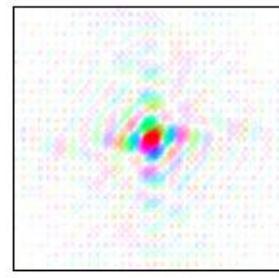
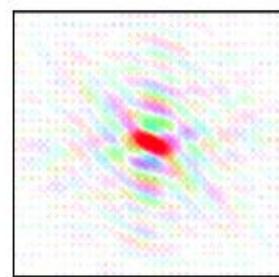


The phase problem

$$F(S) = A_o e^{2\pi i \alpha}$$



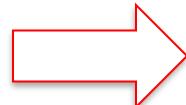
FT



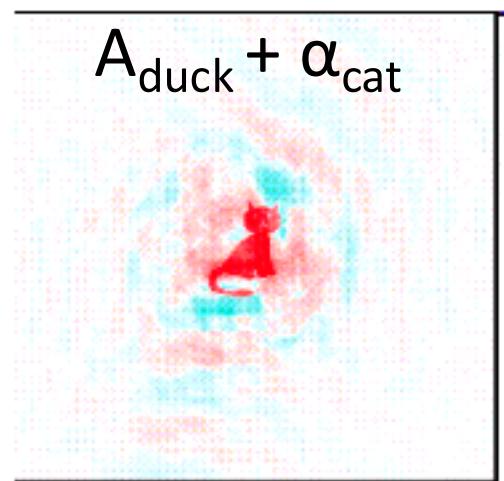
Real space

Imaginary space

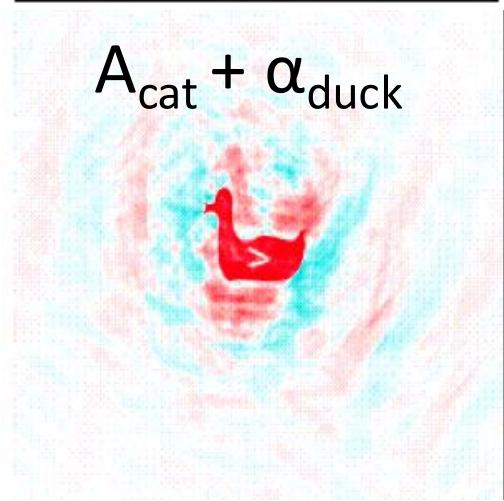
FT⁻¹



$A_{\text{duck}} + \alpha_{\text{cat}}$



$A_{\text{cat}} + \alpha_{\text{duck}}$



Without phases you cannot reconstruct image of original object

Third challenge in macromolecular crystallography!!

Methods to obtain α_c

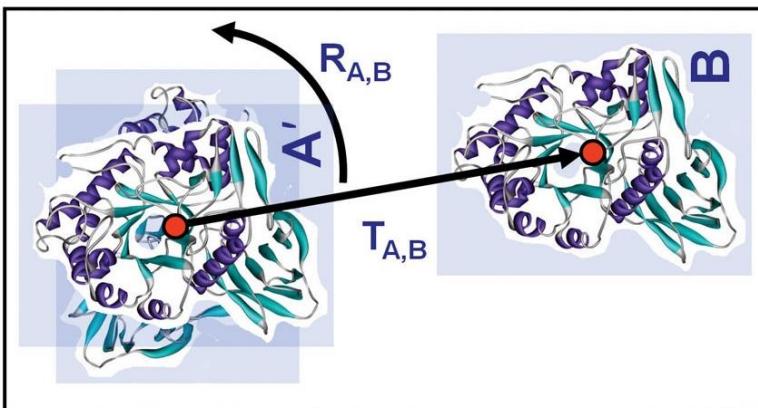
- Direct methods (used for small molecules)
- MR - molecular replacement
- MIR- multiple isomorphous replacement
- MAD/SAD – multi- or single wavelength anomalous dispersion
 - For MIR and MAD/SAD, the phases are calculated from experimental data – less (model) bias but more time in the wet lab!

Molecular replacement

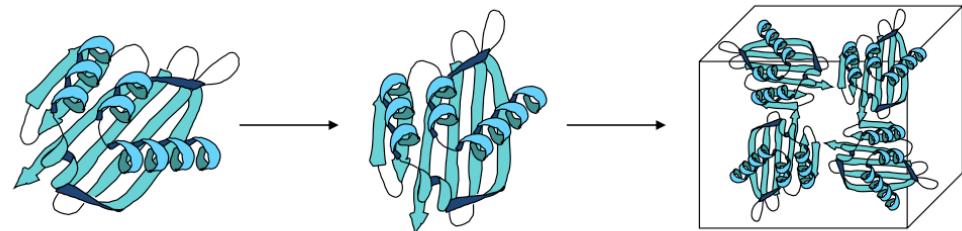
- Solve the phase problem by placing an already solved **homologous structure** (based on sequence identity of ~30% or higher) in our lattice.
- **Alpha-fold models** have helped to solve the phases of previously failed jobs.

Molecular replacement

How? **Rotate and translate** the model (3D searches) until the calculated diffraction data (A_c) from the relocated model fits the observed diffraction data (A_o)



© Garland Science 2010



MR examples

- Aurora A kinase – is ligand in ATP pocket?

Structure solution and refinement

1. Have observed amplitudes A_{obs} or A_o

Structure solution and refinement

1. Have observed amplitudes A_{obs} or A_o
2. Use the MR solution to calculate $F_c = A_c e^{2\pi i \alpha_c}$ (first estimate of the phase, α_c)

Structure solution and refinement

1. Have observed amplitudes A_{obs} or A_o
2. Use the MR solution to calculate $F_c = A_c e^{2\pi i \alpha_c}$ (first estimate of the phase, α_c)
3. Calculate two things:
 1. R-factors (compare A_o and A_c)

R-factors

- R-factor and R_{free} as criteria for convergence and quality of model – this is resolution dependent!!
- A good value for the R factor is between 15-25%

$$R = \frac{\sum_{hkl} |A_{\text{obs}}(hkl) - kA_{\text{calc}}(hkl)|}{\sum_{hkl} A_{\text{obs}}(hkl)}$$

R-factors

- R_{free} is calculated using a set of intensities (around 5%) that are excluded from the refinement process, such that they are not affected by model bias.
- It is usually 1-10% higher than the R factor

Structure solution and refinement

1. Have observed amplitudes A_{obs} or A_o
2. Use the MR solution to calculate $F_c = A_c e^{2\pi i \alpha_c}$ (first estimate of the phase, α_c)
3. Calculate two things:
 1. R-factors (compare A_o and A_c)
 2. $\rho(x,y,z)$ from $\rho(x,y,z) = \text{FT}^{-1} A_o e^{2\pi i \alpha_c}$

$$\rho(x,y,z) = \text{FT}^{-1} (2A_o - A_c) e^{2\pi i \alpha_c}$$

$$\rho(x,y,z) = \text{FT}^{-1} (A_o - A_c) e^{2\pi i \alpha_c} \rightarrow \text{difference map}$$

The electron density map

- The electron density $\rho(xyz)$ is represented as a map, where we model the atomic coordinates

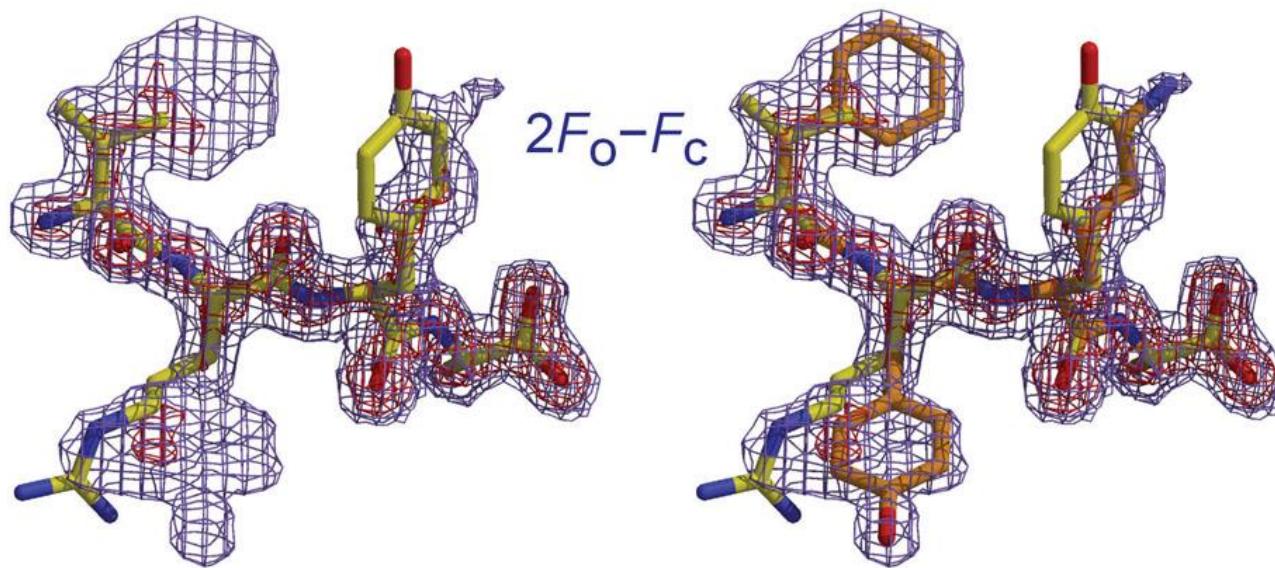
The electron density map

- The $A_o - A_c$ (Fo-Fc) difference map shows negative difference density (where there should not be any density) in **red** and positive difference density (where there should be density) in **green**.
- Both regions correctly reveal the difference between the starting model and the correct model.

$$\rho(x,y,z) = \text{FT}^{-1} (A_o - A_c) e^{2\pi i \alpha c} \rightarrow \text{difference map}$$

The electron density map

The $2A_o - A_c$ ($2F_o - F_c$) map can be interpreted as a combination of the previously mentioned difference map ($F_o - F_c$) and a F_o map. The $2F_o - F_c$ map is well suited to early model building stages



$$\rho(x,y,z) = FT^{-1} (2A_o - A_c) e^{2\pi i \alpha c}$$

Structure solution and refinement

1. Have observed amplitudes A_{obs} or A_o
2. Use the MR solution to calculate $F_c = A_c e^{2\pi i \alpha_c}$ (first estimate of the phase, α_c)
3. Calculate two things:
 1. R-factors (compare A_o and A_c)
 2. $\rho(x,y,z)$ from $\rho(x,y,z) = \text{FT}^{-1} A_o e^{2\pi i \alpha_c}$

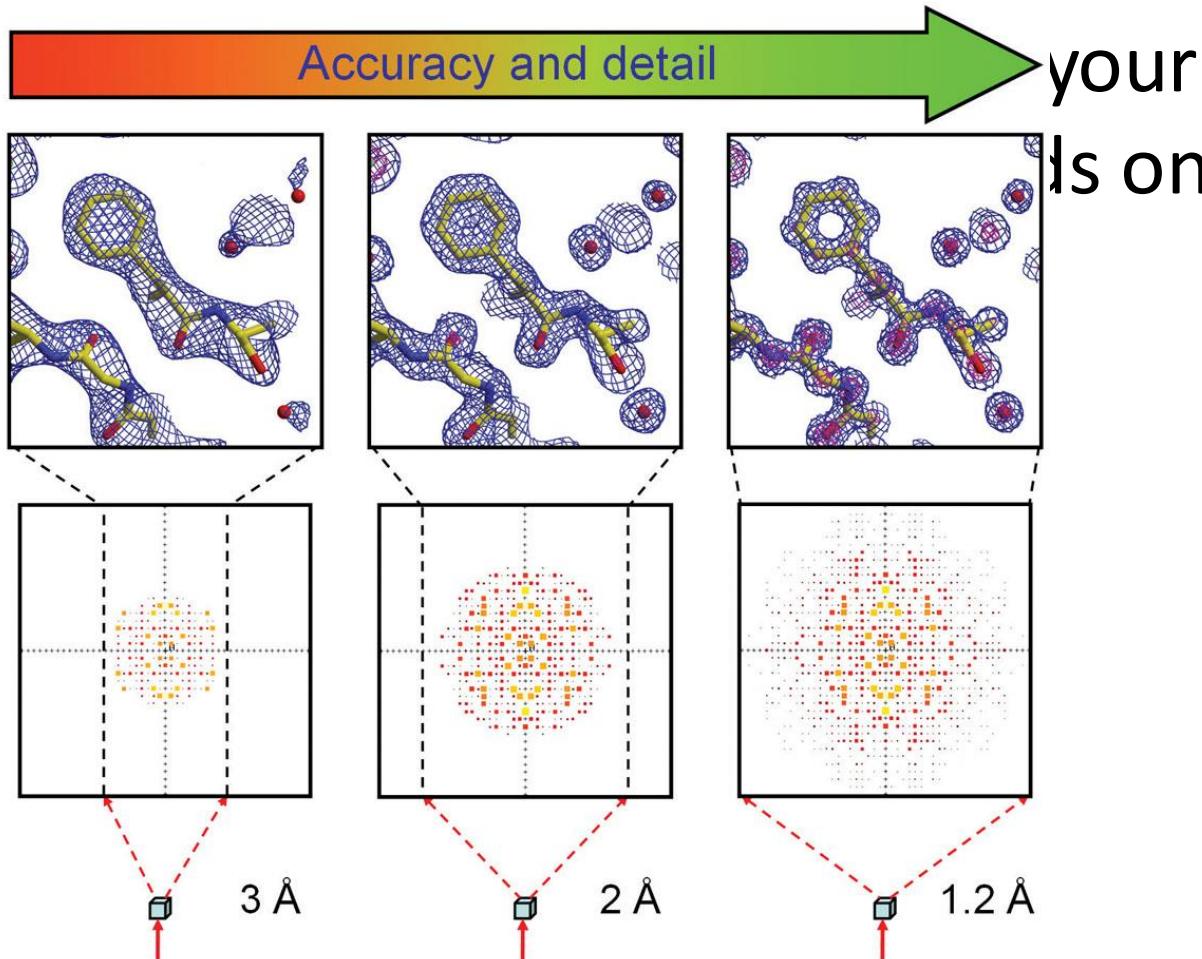
$$\rho(x,y,z) = \text{FT}^{-1} (2A_o - A_c) e^{2\pi i \alpha_c}$$

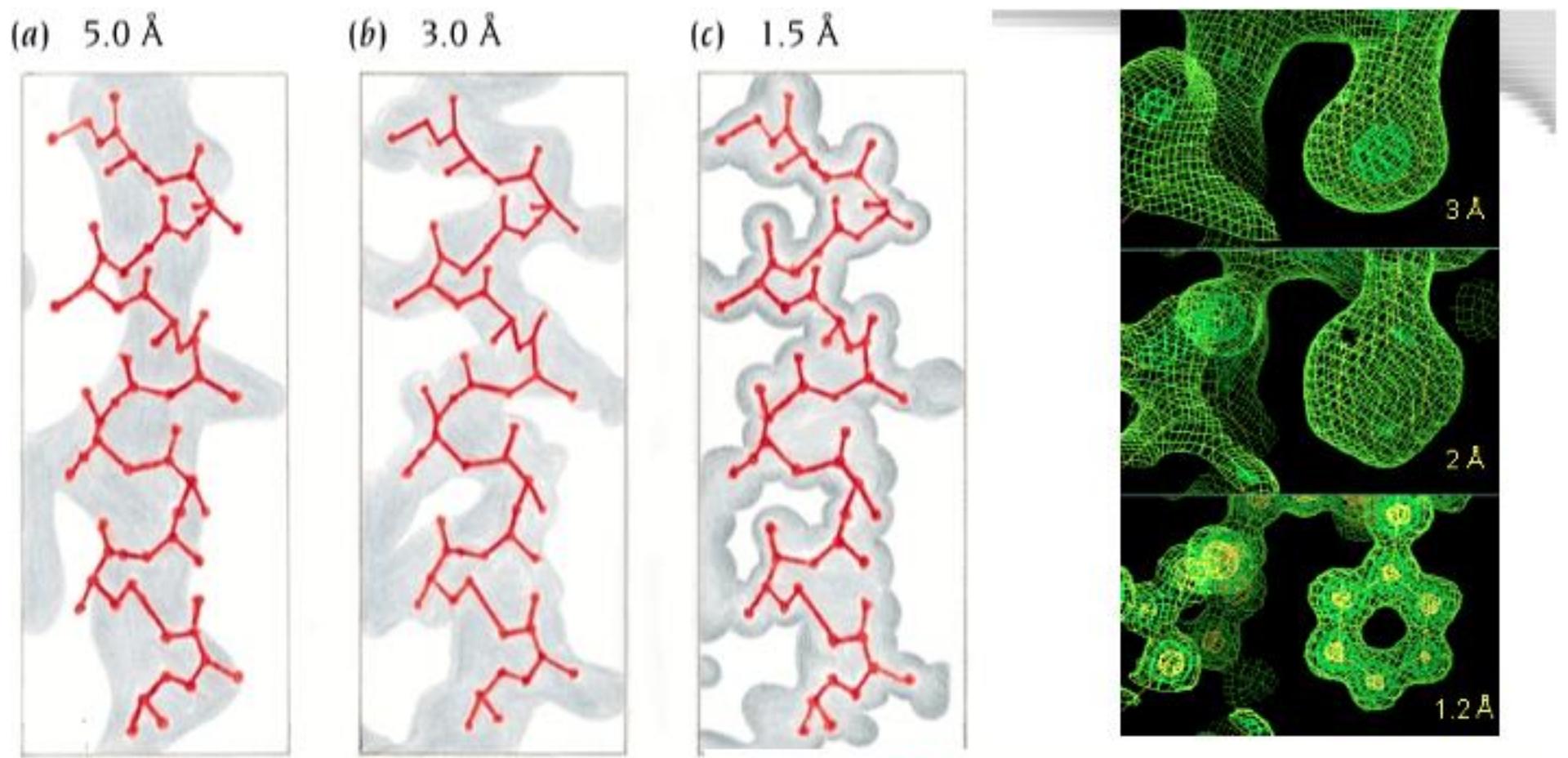
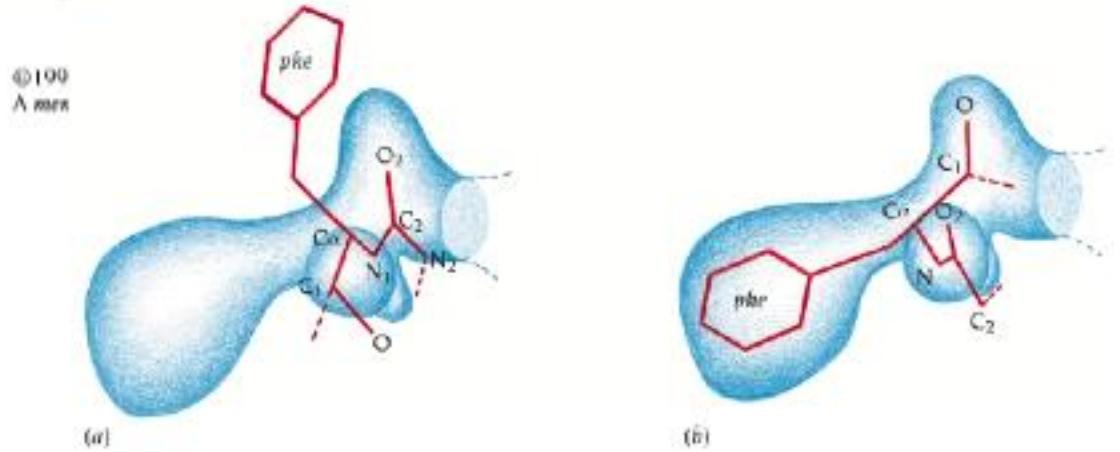
$$\rho(x,y,z) = \text{FT}^{-1} (A_o - A_c) e^{2\pi i \alpha_c} \rightarrow \text{difference map}$$

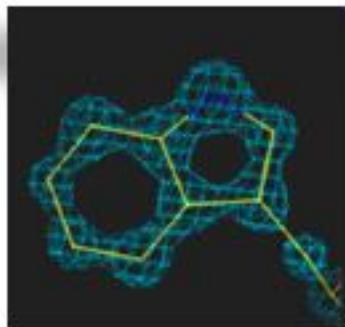
4. Visualize $\rho(x,y,z)$ using a map and optimize molecular model

Model building

- Consider the resources available to you

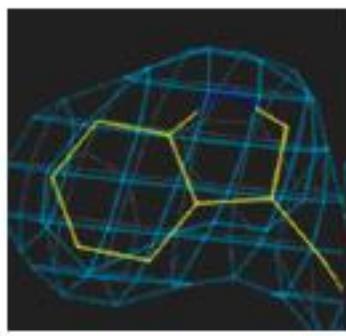




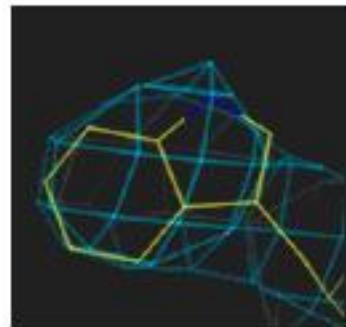


1.0 Å

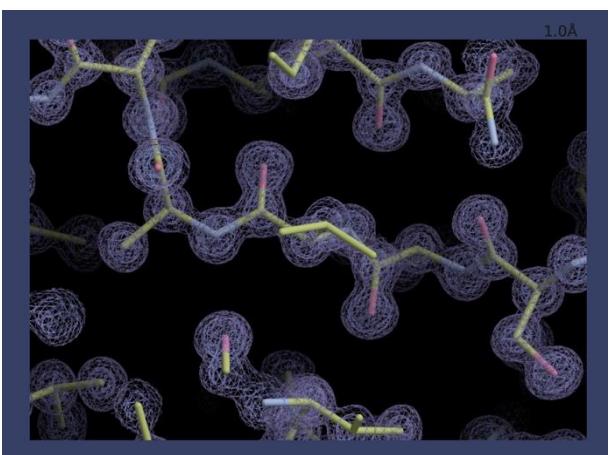
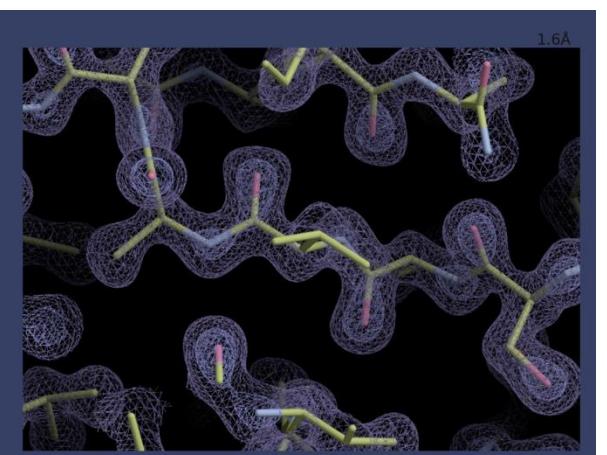
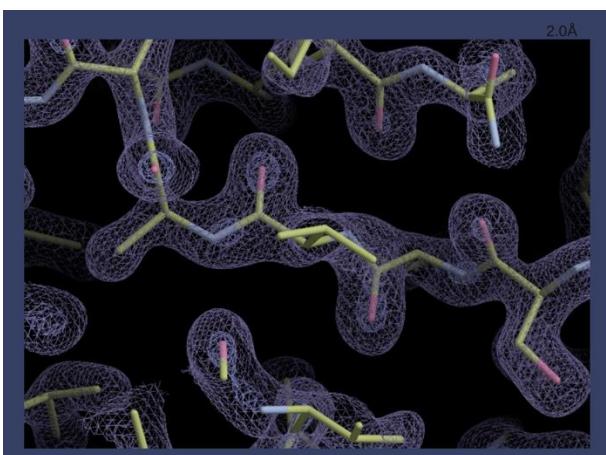
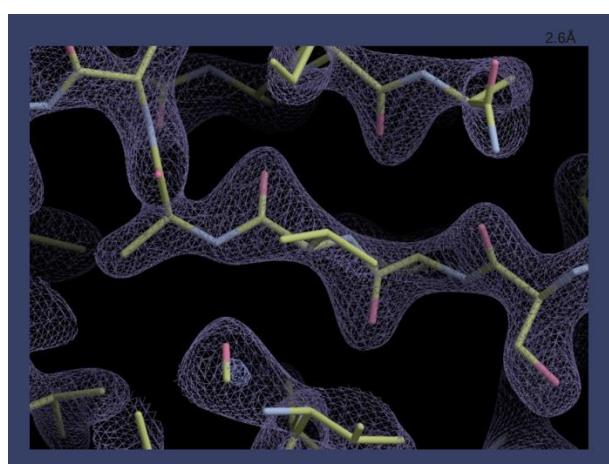
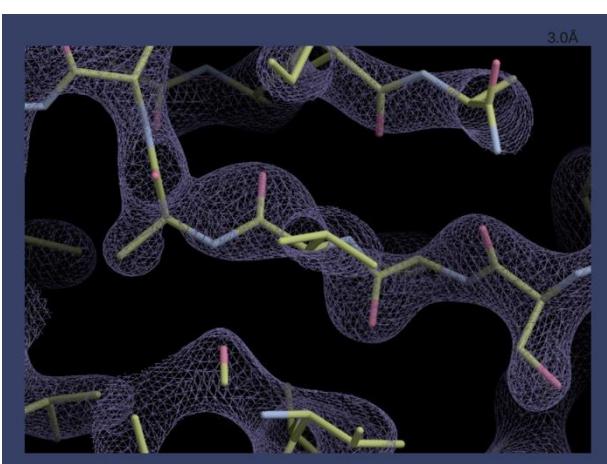
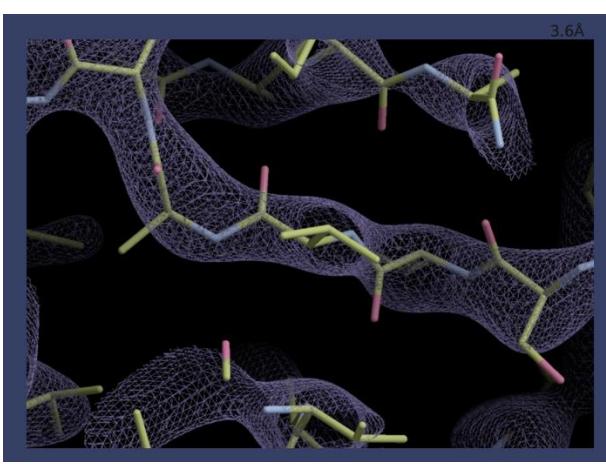
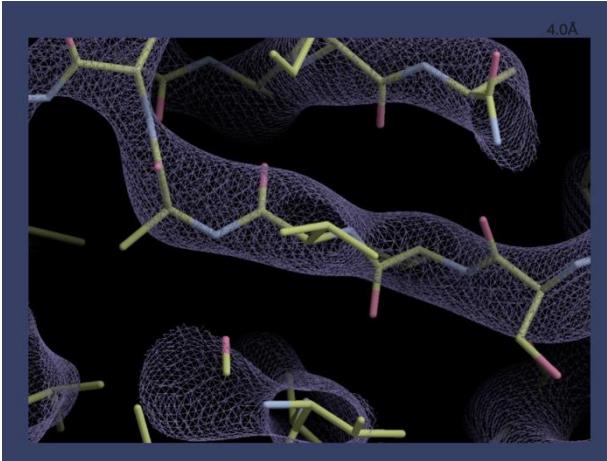
1.5 Å



3.0 Å



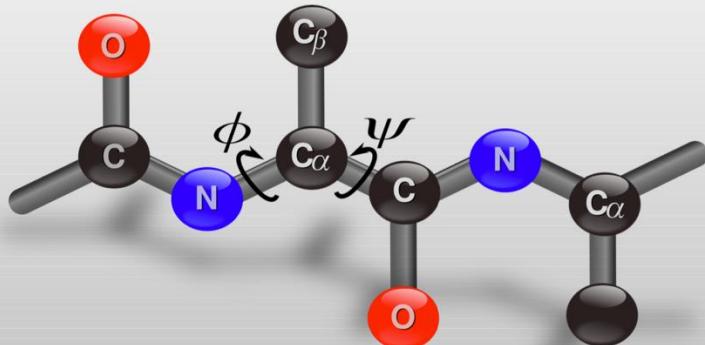
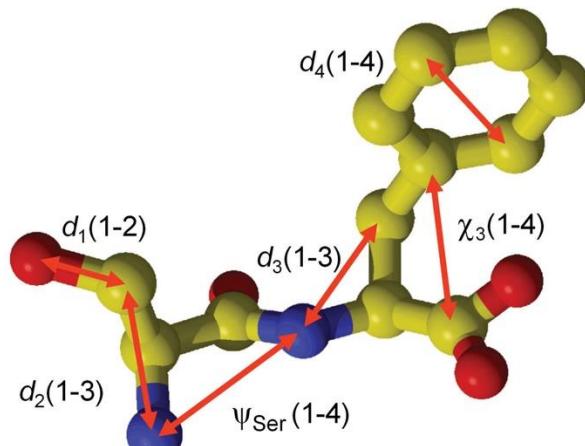
4.0 Å



Model building and refinement

- Chemical laws have to be kept – restraints in refinement

Peptide Backbone Geometry



© Garland Science 2010

Structure solution and refinement

1. Have observed amplitudes A_{obs} or A_o
2. Use the MR solution to calculate $F_c = A_c e^{2\pi i \alpha_c}$ (first estimate of the phase, α_c)
3. Calculate two things:
 1. R-factors (compare A_o and A_c)
 2. $\rho(x,y,z)$ from $\rho(x,y,z) = \text{FT}^{-1} A_o e^{2\pi i \alpha_c}$

$\rho(x,y,z) = \text{FT}^{-1} (2A_o - A_c) e^{2\pi i \alpha_c}$

$\rho(x,y,z) = \text{FT}^{-1} (A_o - A_c) e^{2\pi i \alpha_c} \rightarrow \text{difference map}$

4. Visualize $\rho(x,y,z)$ using a map and optimize molecular model
5. Use the new model to calculate new $F_c = A_c e^{2\pi i \alpha_c}$ (new α_c , hopefully improved!)

Structure solution and refinement

1. Have observed amplitudes A_{obs} or A_o
2. Use the MR solution to calculate $F_c = A_c e^{2\pi i \alpha_c}$ (first estimate of the phase, α_c)
3. Calculate two things:
 1. R-factors (compare A_o and A_c)
 2. $\rho(x,y,z)$ from $\rho(x,y,z) = \text{FT}^{-1} A_o e^{2\pi i \alpha_c}$

$$\rho(x,y,z) = \text{FT}^{-1} (2A_o - A_c) e^{2\pi i \alpha_c}$$

$$\rho(x,y,z) = \text{FT}^{-1} (A_o - A_c) e^{2\pi i \alpha_c} \rightarrow \text{difference map}$$

4. Visualize $\rho(x,y,z)$ using a map and optimize molecular model
5. Use the new model to calculate new $F_c = A_c e^{2\pi i \alpha_c}$ (new α_c , hopefully improved!)
6. Calculate new R-factors and new $\rho(x,y,z)$ from A_o and latest α_c

Structure solution and refinement

1. Have observed amplitudes A_{obs} or A_o
2. Use the MR solution to calculate $F_c = A_c e^{2\pi i \alpha_c}$ (first estimate of the phase, α_c)
3. Calculate two things:
 1. R-factors (compare A_o and A_c)
 2. $\rho(x,y,z)$ from $\rho(x,y,z) = \text{FT}^{-1} A_o e^{2\pi i \alpha_c}$

$$\rho(x,y,z) = \text{FT}^{-1} (2A_o - A_c) e^{2\pi i \alpha_c}$$

$$\rho(x,y,z) = \text{FT}^{-1} (A_o - A_c) e^{2\pi i \alpha_c} \rightarrow \text{difference map}$$

4. Visualize $\rho(x,y,z)$ using a map and optimize molecular model
5. Use the new model to calculate new $F_c = A_c e^{2\pi i \alpha_c}$ (new α_c , hopefully improved!)
6. Calculate new R-factors and new $\rho(x,y,z)$ from A_o and latest α_c
7. Improve molecular model on the latest $\rho(x,y,z)$

Structure solution and refinement

1. Have observed amplitudes A_{obs} or A_o
2. Use the MR solution to calculate $F_c = A_c e^{2\pi i \alpha_c}$ (first estimate of the phase, α_c)
3. Calculate two things:
 1. R-factors (compare A_o and A_c)
 2. $\rho(x,y,z)$ from $\rho(x,y,z) = \text{FT}^{-1} A_o e^{2\pi i \alpha_c}$

$$\rho(x,y,z) = \text{FT}^{-1} (2A_o - A_c) e^{2\pi i \alpha_c}$$

$$\rho(x,y,z) = \text{FT}^{-1} (A_o - A_c) e^{2\pi i \alpha_c} \rightarrow \text{difference map}$$

NOT IN cryoEM

4. Visualize $\rho(x,y,z)$ using a map and optimize molecular model
5. Use the new model to calculate new $F_c = A_c e^{2\pi i \alpha_c}$ (new α_c , hopefully improved!)
6. Calculate new R-factors and new $\rho(x,y,z)$ from A_o and latest α_c
7. Improve molecular model on the latest $\rho(x,y,z)$
8. Repeat steps 4 to 7 until A_c approaches A_o (= Refinement)

Model building & Refinement

- “Repeat the process until A_c approaches A_o ”
- “The key to successful protein structure modelling is the cycling between local **real space model building** and model correction and global **reciprocal space refinement**. The molecular model is built in real space into electron density using computer graphics. The parameters of the model atoms (coordinates x, y, z for example) are corrected in restrained reciprocal space refinement by **optimizing the fit** between observed and calculated structure factor amplitudes (A_o and A_c)” (from Rupp, B. (2010) Biomolecular Crystallography).
- Successive rounds of rebuilding, error correction, and refinement are needed to obtain a good final protein model.

Model building & Refinement

CRYST1	107.134	70.634	106.955	90.00	119.85	90.00	P	1	21	1
SCALE1	0.009334	0.000000	0.005357		0.00000					
SCALE2	0.000000	0.014157	0.000000		0.00000					
SCALE3	0.000000	0.000000	0.010780		0.00000					
ATOM	1	N	ASN	A	4	-28.919	13.478	40.870	1.00141.12	N
ATOM	2	CA	ASN	A	4	-28.597	14.680	40.049	1.00138.30	C
ATOM	3	CB	ASN	A	4	-28.136	14.256	38.645	1.00138.55	C
ATOM	4	CG	ASN	A	4	-27.099	15.204	38.053	1.00139.73	C
ATOM	5	OD1	ASN	A	4	-25.970	15.295	38.549	1.00135.90	O
ATOM	6	ND2	ASN	A	4	-27.482	15.914	36.987	1.00137.13	N
ATOM	7	C	ASN	A	4	-29.649	15.816	39.943	1.00132.40	C
ATOM	8	O	ASN	A	4	-29.347	16.824	39.296	1.00125.34	O
ATOM	9	N	GLU	A	5	-30.877	15.702	40.467	1.00131.12	N
ATOM	10	CA	GLU	A	5	-31.728	14.496	40.484	1.00132.68	C
ATOM	11	CB	GLU	A	5	-31.895	13.757	41.834	1.00132.56	C
ATOM	12	C	GLU	A	5	-32.818	14.340	39.402	1.00134.58	C
ATOM	13	O	GLU	A	5	-33.441	13.281	39.259	1.00135.69	O
ATOM	14	N	ASN	A	6	-33.054	15.450	38.688	1.00122.42	N

ATOM	898	CA	GLY	A	112	-43.737	5.641	33.440	1.00	45.10	C
ATOM	899	C	GLY	A	112	-44.317	4.270	33.133	1.00	43.23	C
ATOM	900	O	GLY	A	112	-44.720	4.106	32.005	1.00	42.05	O
ATOM	901	N	LEU	A	113	-44.354	3.337	34.129	1.00	41.68	N
ATOM	902	CA	LEU	A	113	-45.044	2.059	34.013	1.00	47.56	C
ATOM	903	CB	LEU	A	113	-44.985	1.212	35.307	1.00	47.03	C
ATOM	904	CG	LEU	A	113	-45.143	-0.305	35.124	1.00	49.28	C
ATOM	905	CD1	LEU	A	113	-44.042	-0.887	34.271	1.00	48.80	C
ATOM	906	CD2	LEU	A	113	-45.151	-0.971	36.491	1.00	54.29	C
ATOM	907	C	LEU	A	113	-46.480	2.276	33.578	1.00	38.77	C
ATOM	908	O	LEU	A	113	-46.940	1.617	32.663	1.00	35.72	O
ATOM	909	N	TYR	A	114	-47.170	3.241	34.195	1.00	42.29	N
ATOM	910	CA	TYR	A	114	-48.602	3.456	33.893	1.00	41.59	C
ATOM	911	CB	TYR	A	114	-49.333	4.362	34.904	1.00	40.95	C
ATOM	912	CG	TYR	A	114	-50.841	4.137	34.909	1.00	38.66	C

Dynamic information of the crystal

$$B = \frac{8\pi^2}{3} \langle u_r^2 \rangle$$

Example:

$B = 20$ -- 0.5 \AA displacement

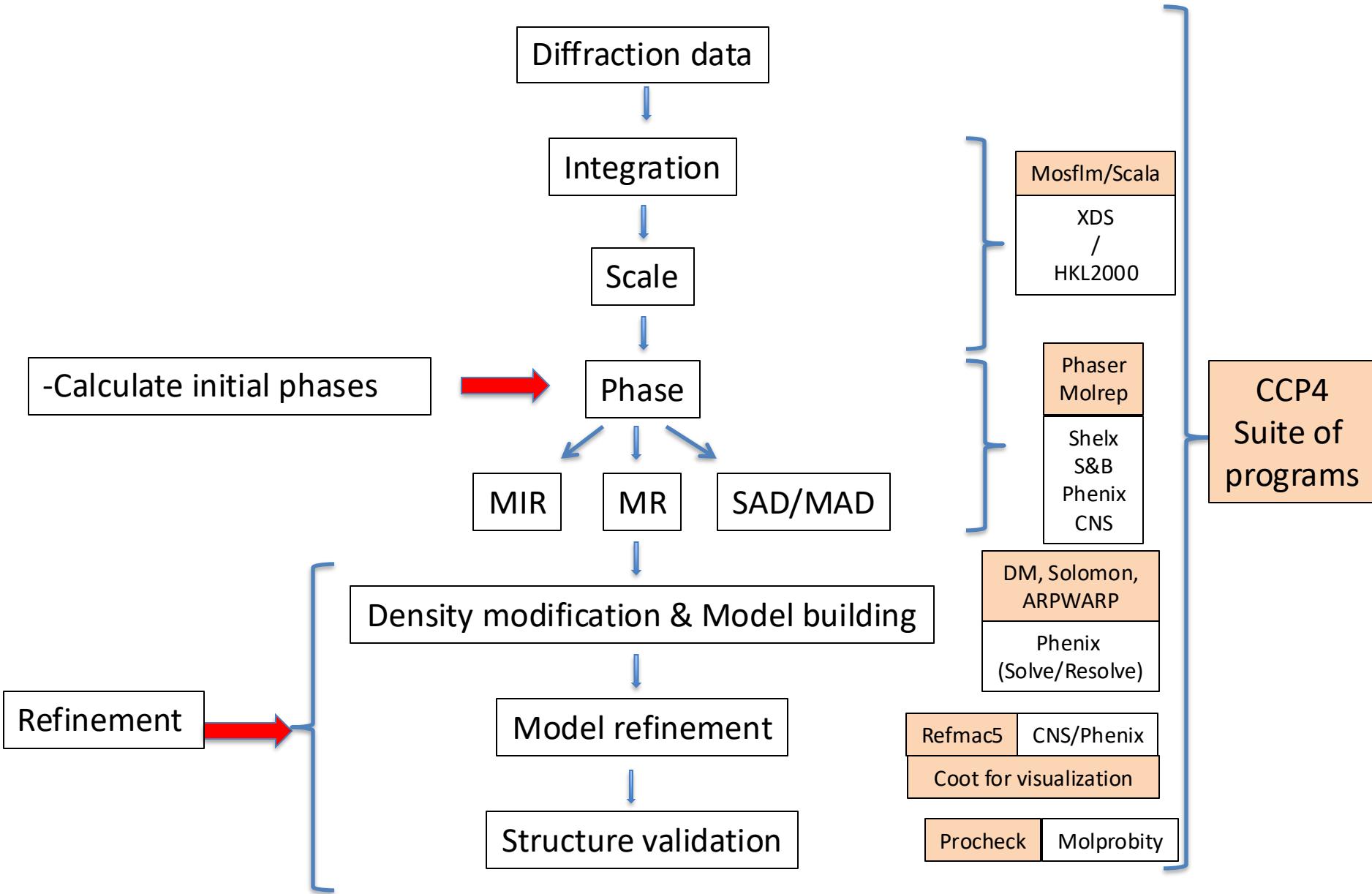
$B = 80$ -- 1 \AA displacement

B: B-factor, temperature factor, or Debye-Waller factor: dynamic disorder $\sim 5-30(\text{\AA}^2)$

$$\langle u_r^2 \rangle = \frac{1}{T} \sum_{t_j=1}^T (x_i(t_j) - \bar{x}_i)^2$$

mean square atomic fluctuation $\sim 0.25-0.60(\text{\AA})$

General overview of how to solve a macromolecular structure



Crystallographic table

Crystallization condition	
X-ray source & Detector	
Wavelength (Å)	
Space group	
Cell (Å °)	
Resolution range (Å)	
Number of observations	
Unique reflections	
Completeness%	Around 100%
$R_{\text{merge}}\%$	Below 10%
Mean $I/\sigma(I)$	>2

Refinement statistics (Phenix Refine)	
Resolution	
R (working set)%	15-25%
$R_{\text{free}}\%$	5-10% > R -factor
Ramachandran outliers	Should be 0
RMSD Bond lengths (Å) Bond angles (°)	Small deviations from ideal values
Model	
Ligands	
Number of water molecules	
B factor (Å ²)	

